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Brain–computer interfaces (BCIs) based on steady-state visually evoked potentials (SSVEPs) are inexpensive and do not

require user training. Researchers herein describe how the light frequency could be selected individually. In particular, this

is done via the proposed discomfort index, determined by the ratio of theta and beta rhythms in the EEG signal.
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1. Introduction

As graphical user interface (GUI) technology is nearing its 50th anniversary, humans are actively seeking new modes of

interaction with machines. A user, considered as a source of information, can use their gestures, voice, eye movements,

etc., to generate control commands or actions. A promising communication channel is the one based on the neural activity

of the brain (hence, the so-called brain–computer interface (BCI)). Its important advantage is accessibility, even for people

whose motor reactions are disrupted or cease completely. For healthy people, BCIs hold a compelling promise to “read

one’s mind”, especially when in conjunction with booming artificial intelligence (AI) technologies . Although BCI

technology is not yet fully mature, it has been applied to control a wide variety of devices, including computers, motorized

wheelchairs , and exoskeletons. It is used to monitor cognitive states, mental loads, and fatigue , as well as in

rehabilitation systems for stroke patients .

There are many paradigms and approaches on the basis of which BCIs are built and function . The one that

demonstrates the highest interaction accuracy and speed  is steady-state visually evoked potential (SSVEP), which

involves a specific neuronal response that occurs as a result of presenting a periodic visual stimulus to a subject . This

reaction is mainly localized to the occipital region of the cerebral cortex and can be recorded in the O1, O2, and Oz leads

placed according to the “10–20” system for electroencephalography (EEG) . The main characteristics of these potentials

are their frequencies, which strictly depend on the frequencies of visual stimuli, and power, which is usually significantly

higher than the power of the baseline brainwave activity. The widely claimed advantages of SSVEP-based BCIs include

the following :

The high speed of the information transfer;

The minimal time required for user training and relative ease of installation;

The safety for the users.

The aforementioned immaturity of the BCI technology leaves much to be desired for each of the above points. First, much

of the current research in the field is focused on the light stimuli of high frequencies (for EEG signals, this means more

than 30 Hz ) to enhance the information transfer rate (ITR) or effective bit rate, as introduced in , and reported on in

BCI studies. ITR is a common metric in SSVEP-BCI interfaces, aiding in the estimation and comparison of different

identification algorithms by combining speed and accuracy. Indeed, the low-frequency range of EEG signals is affected by

high-amplitude artifacts, such as EOG artifacts (concentrated in the frequency range of 1 to 5 Hz ). Moreover, it is

overlapped by a more powerful alpha-rhythm of the EEG signal, concentrated in the frequency range of 8 to 14 Hz.

However, SSVEP potentials are usually most intense in the frequency range of around 15 Hz, and the power of the

evoked potential decreases with the increase of the light stimulus frequency .

Second, BCIs are rather less universal than most other human–machine interface modes, as the former generally require

calibration and adaptation to the user’s individual characteristics. SSVEP-based BCIs have a wide scope of applications,
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ranging from controlling smart home devices  to enabling communication with patients with disorders of consciousness

and facilitating the rehabilitation of individuals after severe head and spinal cord injuries . In these scenarios, the

usability and minimal training duration required to ensure reliable operation take precedence. Indeed, as mentioned

above, in some people, the response level to a certain stimulus frequency may be too low relative to the EEG signal itself,

making this frequency unsuitable for use . This makes it difficult to build a universal BCI that uses a single frequency

range for its users. The need for calibration is recognized as a major obstacle for the wider BCI development and hurts

the overall user experience (UX) . The currently popular approach to the so-called subject calibration problem is

“subject-transfer” , which largely corresponds to the general transfer learning approaches in AI-ML: instance-based,

parameter-based, or feature-based . Correspondingly, methods and models that improve the trade-off between the

calibration effort and the BCI performance move the field forward, but this issue is far from being resolved yet.

Third, the claimed safety of BCIs is rather situational. Even if we do not consider brain-invasive techniques, the photo

stimuli can cause strong fatigue (particularly to the eyes) and even provoke an epileptic seizure for individuals suffering

from photosensitive epilepsy . Research suggests that these risks are frequency-specific, being more prone to the

middle-frequency range of EEG signals (from 12 to 30 Hz) , and user group-specific . Zhang and colleagues

demonstrated in their recent study that SSVEP target–classification accuracy decreases under the influence of stress .

To assess the extent of the impact of periodic photostimulation on the subjective emotional state of participants and to

objectify the degree of discomfort experienced during interaction with neurointerfaces, researchers in this field employ

indices that are specifically derived from the power ratios of major EEG frequency bands. For instance, theta–beta ratio

, theta–alpha ratio , and frontal alpha asymmetry  have frequently been used as such indices in scientific

literature. Incorporating these index values into the development of an algorithm for individually tailored stimulation

frequencies could represent a crucial step toward creating more personalized and user-friendly interfaces.

2. BCI Applications

Nowadays, brain–computer interfaces are being applied in many fields and for many purposes. Many different paradigms

are being used to design them. It is difficult to fully cover these areas, and presented here is just a fraction of the research

aimed at enhancing quality of life.

An important direction in this field involves the use of BCIs to restore the function of the cerebral cortex when it is

damaged. This is achieved through the introduction of biological feedback. Reference  showed—for the first time—that

with the help of invasive BCIs, it is possible to restore movement to paralyzed limbs in people suffering from “locked-in

syndrome” (LIS). This condition is characterized by a complete loss of speech and paralysis while maintaining

consciousness and sensitivity.

BCIs are also used for cursor control, text input, and forming commands for robots. An interesting example is presented in

reference , where people with spinal cord injuries were able to modulate neural activity associated with the intention to

move, even 3 years after the injury.

In recent studies, BCIs were created that could automatically recognize speech from neural activities recorded using

EEGs, as well as reconstruct whole sentences from thoughts with a limited vocabulary . Another line of research

demonstrates the possibility of controlling a patient’s prosthetics or exoskeletons based on neural activity recorded using

EEGs . This opens up new perspectives for reproducing fine motor skills with prosthetics in the future.

A recent study introduced an unsupervised data-driven pipeline for rejecting blink and muscle artifacts in EEG time series

for use in motor imagery (MI)-based BCIs integrated with the Internet of Medical Things (IoMT) . Using this approach

reduces processing times, resource demands, and reliance on human intervention, making it a promising avenue for

crafting efficient, user-friendly real-time BCI systems. Moreover, the technique proposed by the authors to enhance TL-

CNN classification between Mex and MI finger-pinching actions is superior to other state-of-the-art methods, which makes

it promising for further development and implementation in practice.

3. SSVEP-Based BCI Enhancements

As a rule, scalp electroencephalography (EEG) is used as a tool to provide continuous registration of a user’s neural

activity for further transmission to BCIs. The EEG signals have high temporal resolution , and the approach involves a

non-invasive process of measuring the electrical activity of the cerebral cortex and does not require surgical intervention.

This provides a high safety level for users of such BCIs, compared to BCIs based on electrocorticography (ECoG) .
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The latter requires mandatory surgical intervention and, thus, poses a high level of risk, making EEG-based BCIs a safer

and more promising technology for universal application.

It is recognized that BCI performance, which has been foremost associated with information transfer rates, is considerably

better with calibration than in calibration-free schemes . With respect to SSVEP-based BCIs, it is believed that a

subject-specific type of calibration is capable of yielding the best performance. However, the time and effort spent on such

individual training sessions are considered to be the most serious disadvantages of this approach . Correspondingly,

up-to-date research in the field focuses on (a) reducing the data amounts that need to be gathered from a particular

subject by reusing some existing data , (b) collecting the data more intensively, e.g., through several channels , and

(c) making more intensive use of available data via smarter calibration algorithms .

4. BCI Usability and User Satisfaction

While the safety of modern BCIs is well-established and performance remains a primary research focus, calibration

algorithms that consider interface usability are relative new. BCI-related studies that follow a user-centered approach

define usability in terms of effectiveness (accuracy), efficiency (ITR and subjective workloads), and user satisfaction .

Selection algorithms that consider the user’s emotional state and subjective comfort during BCI interactions can help lead

to new levels of user experience. However, there is a certain disparity in how exactly the registered EEG signals should

be used to automatically infer various dimensions of user satisfaction. Y.N. Ortega and co-authors have exhaustively

addressed this in their works, recently culminating in a connection between potential EEG signal characteristics and

usability measures, as presented in .

As mentioned in , using flicker frequencies in the range of 4–30 Hz can lead to visual fatigue. Thus, it is important to

find frequencies at which the interaction will be the most effective and the person experiences minimal discomfort in using

BCIs . Various methods are employed to minimize the discomfort; for example,  proposed using a chessboard

stimulus, which allows for reducing user discomfort without compromising performance. In turn, researchers suggest

taking user satisfaction into account when selecting an individual frequency for BCI.

The safety of using brain–computer interfaces is a determining factor that allows them to be integrated into various

aspects of our lives; therefore, this factor should be approached with the utmost seriousness and attention.
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