Various Protein Kinase Inhibitors as Anticancer Agents

Subjects: Oncology

Contributor: Aleksandra Sochacka-Ćwikła , Marcin Mączyński , Andrzej Regiec

Protein kinases (PTKs) are enzymes that regulate the biological activity of proteins by phosphorylation of certain amino acid residues. This reaction causes a conformational change from an inactive to an active form of the protein, which is one of the most important regulatory mechanisms of the cell cycle and transduction of external signals. Dysregulation of protein kinases activity is implicated in the processes of carcinogenesis and the progression of various solid cancers. Therefore, protein kinases are prime targets for the development of selective anticancer drugs.

```
Protein kinases
```

Anticancer agents

Small molecule inhibitors

1. Tyrosine Kinase (TK) Inhibitors

Tyrosine kinases (RTKs) are enzymes that selectively phosphorylate the hydroxyl groups of a tyrosine residue in different proteins with adenosine triphosphate (ATP) as the source of phosphate. They have a share in the regulation of the most fundamental cellular processes, such as growth, differentiation, proliferation, survival, migration and metabolism of cells or programed cell death in response to extracellular and intracellular stimuli ^[1]. There are two types of tyrosine kinases, namely receptor tyrosine kinases (RTKs) and nonreceptor tyrosine kinases (NRTKs) ^[2]. A lot of RTKs and NRTKs are associated with cancers, thus a significant number of tyrosine kinase inhibitors (TKIs) are currently in clinical development. Since 2011, the FDA approved eleven new anticancer drugs that are inhibitors of anaplastic lymphoma kinase (ALK), epidermal growth factor receptor (EGFR or HER1), human epidermal growth factor receptor 2 (HER2), human epidermal growth factor receptor 4 (HER4), fibroblast growth factor receptors (FGFRs), vascular endothelial growth factor receptors (VEGFRs), mesenchymal-epithelial transition factor (MET) or receptor tyrosine kinase rearranged during transfection (RET) (**Table 1**). These drugs show anticancer activity by blocking multiple molecular signal transduction pathways (**Figure 1**).

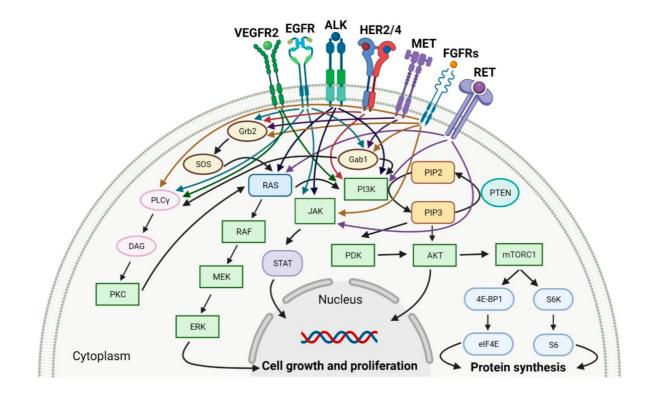


Figure 1. Molecular signal transduction pathways for specific receptor tyrosine kinases (RTKs). VEGFR2: vascular endothelial growth factor receptor 2. EGFR: epidermal growth factor receptor. ALK: anaplastic lymphoma kinase. HER2/4: human epidermal growth factor receptor 2 and 4. MET: mesenchymal-epithelial transition factor. FGFRs: fibroblast growth factor receptors. RET: tyrosine kinase rearranged during transfection receptor. Gab1: Grb2-associated-binding protein 1. Grb2: growth factor receptor-bound protein 2. SOS: Son of sevenless. PLCy:. phospholipase C gamma. DAG: diacylglycerol. PKC: protein kinase C. RAS: rat sarcoma viral oncogene homolog. RAF: proto-oncogene serine/threonine-protein kinase. MEK: mitogen-activated protein kinase. ERK: mitogen-activated protein kinase. PI3K: phosphatidylinositol 3-kinase. PIP2: phosphatidylinositol 4,5-bisphosphate. PIP3: phosphatidylinositol-3,4,5-trisphosphate. PTEN: phosphatase and tensin homolog deleted on chromosome ten. PDK: 3-phosphoinositide-dependent protein kinase. AKT: protein kinase B. mTORC1: mammalian target of rapamycin complex 1. 4E-BP1: 4E-binding protein 1. eIF4E: eukaryotic translation initiation factor 4E. S6K: p70S6 kinase. S6: S6 protein. JAK: Janus kinase. STAT: signal transducer and activator of transcription. Created with BioRender.com based on information in [3][4][S][6][7][8][9].

The oncogenic driver mutations identified in non-small-cell lung cancer (NSCLC) include ALK gene rearrangements, ROS1 gene rearrangements, EGFR mutations, MET mutations and RET rearrangements ^[10]. In NSCLC harboring ALK gene rearrangements are observed ALK fusion proteins with potent transforming activity as oncogenic drivers of tumor growth ^[11]. **Ceritinib** is the second-generation AKL inhibitor that blocks autophosphorylation of ALK and ALK-mediated phosphorylation of signal transducer and activator of transcription 3 (STAT3), which is a downstream signaling protein ^{[12][13]}. Hence, this drug inhibits the cell cycle in the G1 phase and the proliferation of ALK-dependent cancer cells. Among the existing therapies targeting EGFR-mutated NSCLC, there have been two FDA-approved medicaments during the last eleven years, i.e., **osimertinib** and **mobocertinib**. **Osimertinib** is a third-generation, irreversible TK inhibitor of both EGFR TKI-sensitizing mutations

and a secondary EGFR mutation in exon 20, namely T790M ^[14]. **Mobocertinib**, on the other hand, is a first-inclass irreversible EGFR TK inhibitor, which was specifically developed to selectively inhibit oncogenic variants containing EGFR exon 20 insertion (EGFRex20ins) mutations. Both drugs form a covalent bond with cysteine 797 in EGFR with high-affinity binding resulting in sustained EGFR activity inhibition ^{[15][16]}. The difference in the structure of these drugs is the presence of an isopropyl ester group on the pyrimidine ring of **mobocertinib**, leading to increased selectivity for the EGFRex20ins mutant compared with **osimertinib** ^[16]. In NSCLC, MET and its mutant variants produced by gene mutation, amplification and overexpression are attractive targets for a blockade. For example, MET and variant with exon 14 skipping mutation are targets for **capmatinib** and **tepotinib** activity. The drugs act by inhibition of MET phosphorylation and the activation of key downstream effectors in METdependent cancer cell lines ^{[17][18]}. The cancers harboring RET alterations, particularly NSCLC, can be treated with **pralsetinib**. It selectively inhibits RET autophosphorylation and proliferation of RET-mutant cancer cells ^[9].

Overexpression of HER2 occurs approximately in 15 to 20% of breast cancers. **Neratinib** and **tucatinib** are inhibitors of the human epidermal growth factor receptors (HERs) that are used for the treatment of HER2-positive breast cancer (HER2 + BC). **Neratinib** irreversibly inhibits EGFR, HER2 and HER4 kinases, while **tucatinib** reversibly and highly selectively blocks HER2. The drugs have shown to be effective in monotherapy or in combination chemotherapy with **capecitabine** ^{[19][20]}. Patients with HER2 + BC who have disease progression after prior therapy with multiple HER2-targeted drugs may benefit from these TKIs used with or without **trastuzumab** ^{[21][22]}. The mechanism of action of both drugs includes binding to the ATP pocket of the HER2, which results in decreased receptor autophosphorylation and inhibition of downstream mitogen-activated protein kinase (MAPK) and phosphatidylinositol triphosphate kinase (PI3K) signaling. This leads to cell cycle arrest at the G1-S phase, thereby reducing cell proliferation ^{[23][24]}.

FGFR2 fusion or rearrangements are present in 10–16% of intrahepatic cholangiocarcinomas. Treatment options, which improve clinical outcomes of patients with cholangiocarcinoma (CCA) harboring FGFR2 gene fusions, have been extended to the first two targeted therapies, i.e., **pemigatinib** and **infigratinib** ^{[25][26]}. The FDA approval of these TKIs includes the indication for adults with previously treated, unresectable, locally advanced or metastatic CCA. Their mechanism of action is a selective, ATP-competitive inhibition of fibroblast growth factor receptors (FGFRs). Both drugs potently inhibit FGFR1, FGFR2 and FGFR3 kinases and also demonstrate weaker activity against FGFR4 ^{[27][28]}.

Renal cell carcinoma (RCC) is the most common type of kidney cancer. From a pathologist's point of view, RCC tends to be a highly vascular tumor. The prominent vascularization is due to the increased production of proangiogenic growth factors, such as vascular endothelial growth factor receptors (VEGFRs) ^[29]. **Tivozanib** is a quinoline-urea derivative that inhibits VEGFRs in an ATP-competitive manner. In particular, the drug shows inhibitory activity against VEGFR-1, VEGFR-2 and VEGFR-3 at picomolar concentrations. The analysis of the mechanism of action indicates that **tivozanib** produced a significant inhibition of the ligand-induced phosphorylation of VEGFRs causing direct anticancer activity as well as suppression of angiogenesis and vascular permeability ^[30]. In clinical trials, this agent used as third-line or fourth-line therapy in patients with RCC improved progression-free survival and was better tolerated than sorafenib ^[31]. The promising results of **tivozanib** led to its

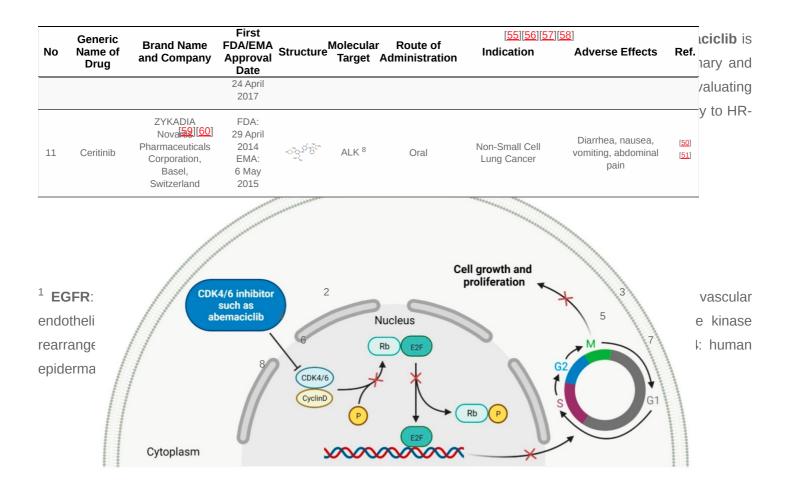
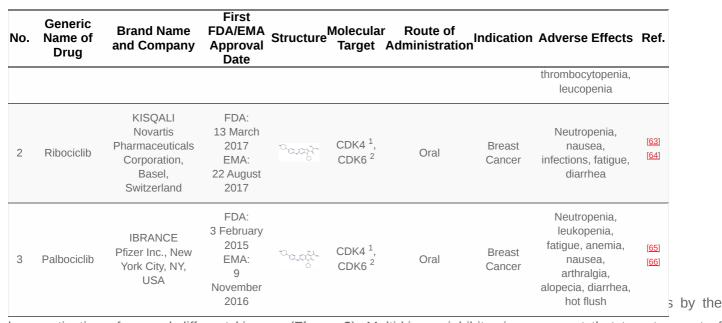

approval by the FDA for the treatment of adult patients with relapsed or refractory advanced RCC following two or more prior systemic therapies ^[32].

Table 1. Features of the tyrosine kinase inhibitors approved as drugs by the Food and Drug Administration (FDA) from 2011 to 2022. The order of drugs is tabulated in order of most recent to oldest registration date. A generic name of a drug is an international nonproprietary name (INN).

No	Generic Name of Drug	Brand Name and Company	First FDA/EMA Approval Date	Structure	Molecula Target	r Route of Administration	Indication	Adverse Effects	Ref.
1	Mobocertinib	EXKIVITY Takeda Pharmaceuticals America, Inc., Deerfield, IL, USA	FDA: 15 September 2021 EMA: Not approved	22000	EGFR ¹	Oral	Non-Small Cell Lung Cancer	Diarrhea, rash, stomatitis, vomiting, decreased appetite, nausea, paronychia, musculoskeletal pain, dry skin, fatigue, decreased hemoglobin, decreased lymphocytes, increased creatinine, amylase, and lipase, decreased potassium, and magnesium	[33]
2	Infigratinib	TRUSELTIQ BridgeBio Pharma, Inc., Palo Alto, CA, USA	FDA: 28 May 2021 EMA: 21 August 2020	જે સંસ્કૃત્ <i>ે</i>	FGFRs ²	Oral	Cholangiocarcinoma	Nail toxicity, stomatitis, dry eye, fatigue, increased creatinine, phosphate, alkaline phosphate, and alanine aminotransferase, decreased phosphate, and hemoglobin	[<u>34]</u> [<u>35]</u>
3	Tivozanib	FOTIVDA AVEO Oncology, Boston, MA, USA; Eusa Pharma (Netherlands) B.V., Schiphol- Rijk	FDA: 10 March 2021 EMA: 24 August 2017	1.20 20 20 20	VEGFRs 3	Oral	Renal Cell Carcinoma	Fatigue, hypertension, diarrhea, decreased appetite, nausea, dysphonia, hypothyroidism, cough, stomatitis, sodium decreased, lipase increased, and phosphate decreased	[32] [36] [37]
4	Tepotinib	TEPMETKO EMD Serono, Inc., Darmstadt, Germany.	FDA: 3 February 2021 EMA:	top.o.	MET ⁴	Oral	Non-Small Cell Lung Cancer	Peripheral edema, diarrhea, fatigue, nausea, decreased appetite, increased	[<u>38</u>]

No	Generic Name of Drug	Brand Name and Company	First FDA/EMA Approval Date	Structure	Molecula Target	ar Route of Administration	Indication	Adverse Effects	Ref.
			Not approved					blood creatinine levels, hypoalbuminemia, increased amylase levels	
5	Pralsetinib	GAVRETO Genentech, Inc., South San Francisco, CA, USA	FDA: 4 September 2020 EMA: 18 November 2021	**************************************	RET ⁵	Oral	Non-Small Cell Lung Cancer	Fatigue, constipation, musculoskeletal pain, hypertension	(<u>39</u>) (<u>40</u>)
6	Capmatinib	TABRECTA Novartis Pharmaceuticals Corporation, Basel, Switzerland	FDA: 6 May 2020 EMA: Not approved	مىرى ا	MET ⁴	Oral	Non-Small Cell Lung Cancer	Peripheral edema, nausea, fatigue, vomiting, dyspnea, decreased appetite	[<u>41</u>]
7	Pemigatinib	PEMAZYRE Incyte Corporation, Wilmington, DE, USA	FDA: 17 April 2020 EMA: March 26, 2021	and of the second se	FGFRs ²	Oral	Cholangiocarcinoma	Hyperphosphatasemia, alopecia, diarrhea, fatigue, dyspepsia	[<u>42]</u> [<u>43</u>]
8	Tucatinib	TUKYSA Seattle Genetics, Inc., Bothell, WA, USA	FDA: 17 April 2020 EMA: 11 February 2021	కరు.ర్త కరు.ర్త	HER2 ⁶	Oral	Breast Cancer	Diarrhea, palmar– plantar erythrodysesthesia syndrome, decreased hemoglobin or phosphate, nausea	[<u>44]</u> [<u>45</u>]
9	Neratinib	NERLYNX Puma Biotechnology, Inc., Los Angeles, CA, USA	FDA: 17 July 2017 EMA: 31 August 2018	~r-gab ^{ar}	EGFR ¹ , HER2 ⁶ , HER4 ⁷	Oral	Breast Cancer	Diarrhea	[<u>46</u>] [<u>47</u>]
10	Osimertinib	TAGRISSO AstraZeneca, Cambridge, UK	FDA: 13 November 2015 EMA:	<u>م ک</u>	EGFR ¹	Oral	Non-Small Cell Lung Cancer	Diarrhea, rash, dry skin, nail toxicity	[<u>48]</u> [<u>49</u>]


(CDK1, 4 and 5) and transcriptional subfamilies (CDK7, 8, 9, 11 and 20). Dysregulating the CDKs and cyclins level leads to abnormal cell proliferation and tumor growth. Owing to the role of CDKs in cancer cells, their inhibition is an important target for novel anticancer drugs. The suppression of CDK4 and CDK6 activity is now being investigated to treat various solid tumors, including lung, prostate and ovarian cancers. The CDK4/6 inhibitors, i.e., **palbociclib**, **ribociclib** and **abemaciclib**, demonstrated promising clinical activity in the treatment of advanced breast cancer, thereby being recently FDA approved (**Table 2**) ^{[53][54]}. The approval of **abemaciclib** (as VERZENIO) includes using it for monotherapy or in combination with **fulvestrant**, which is an estrogen receptor antagonist. **Palbociclib** (as IBRANCE) was registered for combination therapy with **fulvestrant** or an aromatase inhibitor (**letrozole**). **Ribociclib** (as KISQALI) was approved only in combination with an aromatase inhibitor (**letrozole**) for initial endocrine-based therapy. All of these drugs are selective inhibitors of cyclin-dependent kinase 4 (CDK4) and 6 (CDK6). They inhibit Rb protein phosphorylation in the early G1 phase, thereby blocking cell-cycle

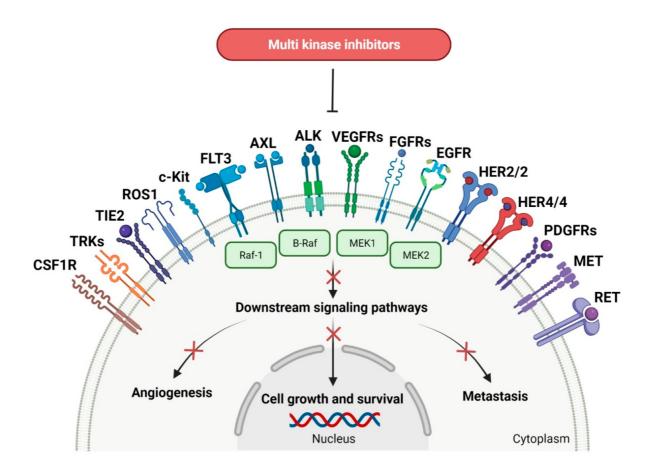

Figure 2. Mechanism of action of CDK4/6 inhibitors (the "x" on the arrows indicates process inhibition). **CDK4/6**: cyclin-dependent kinase 4/6. **P**: phosphate group. **Rb**: retinoblastoma protein. **E2F**: E2 factor. **G1**: first growth phase. **S**: synthesis phase. **G2**: second growth phase. **M**: mitotic phase. Created with BioRender.com based on information in Ref. ^[54].

Table 2. Features of the cyclin-dependent kinase inhibitors approved as drugs by the Food and Drug Administration (FDA) from 2011 to 2022. The order of drugs is tabulated in order of most recent to oldest registration date. A generic name of a drug is an international nonproprietary name (INN).

No.	Generic Name of Drug	Brand Name and Company	First FDA/EMA Approval Date	Structure	Molecula Target	r Route of Administration	nIndication	Adverse Effects	Ref.
1	Abemaciclib	VERZENIO Eli Lilly and Company, Indianapolis, IN, USA	FDA: 28 September 2017 EMA: 27 September 2018	-a.of	CDK4 ¹ , CDK6 ²	Oral	Breast Cancer	Diarrhea, fatigue, nausea, decreased appetite, abdominal pain, neutropenia, vomiting, infections, anemia, headache,	[<u>61</u>] [<u>62</u>]

hyperactivation of several different kinases (**Figure 3**). Multi-kinase inhibitor is one agent that targets a set of structurally related kinases leading to simultaneous blocking of their activity ^[67]. The use of one multi-kinase inhibitor is preferred to two single agents, since drug-drug interactions can trigger changing metabolism and activities against particular kinases. Multi kinase drugs become the second choice when their pharmacokinetic properties are worse.¹ **Grokescyolididepart and inhibitors** are ² **ICOKE** cyolidide depart of the multi-kinase inhibitors is acquired resistance ^[68]. The approval characteristics of FDA-registered multi-kinase inhibitors are presented in **Table 3**.

Figure 3. Schematic representation of mode of action of multi-kinase inhibitors that target a set of various related kinases (the "x" on the arrows indicates process inhibition). **CSF1R**: colony-stimulating factor 1 receptor. **TRKs**: tropomyosin receptor tyrosine kinases. **TIE2**: tunica interna endothelial cell kinase 2. **ROS1**: proto-oncogene tyrosine-protein kinase ROS. **c-Kit**: mast/stem cell growth factor receptor. **FLT3**: FMS-like tyrosine kinase-3. **AXL**: AXL receptor tyrosine kinase. **ALK**: anaplastic lymphoma kinase. **VEGFRs**: vascular endothelial growth factor receptors. **FGFRs**: fibroblast growth factor receptors. **EGFR**: epidermal growth factor receptor. **HER2/2**: human epidermal growth factor receptor 2 and 2. **HER4/4**: human epidermal growth factor receptor 4 and 4. **PDGFRs**: platelet-derived growth factor receptors. **RET**: receptor tyrosine kinase. **MEK1**: mitogen-activated protein kinase kinase 1. **MEK2**: mitogen-activated protein kinase kinase 2. **MET**: mesenchymal-epithelial transition factor. Created with BioRender.com.

Patients with NSCLC receiving the first-generation TKIs, e.g., **crizotinib**, **geftinib** and **erlotinib**, experienced issues related to acquired resistance. This resistance can develop by various mechanisms, such as **crizotinib**-resistant mutations in the anaplastic lymphoma kinase (ALK) domain. In addition, patients' treatment with **crizotinib** often develops CNS metastases, likely due to the poor CNS penetration of **crizotinib**. However, **crizotinib** exhibits higher clinical response rates than standard chemotherapy and is recommended both for first-line therapy in NSCLC, as well as next-line therapy in patients who have not been treated with **crizotinib** previously. The next-generation multi-kinase inhibitors are designed to overcome TKI-resistant mutations. **Alectinib**, **brigatinib** and **entrectinib**, which are the second-generation ALK inhibitors, possess activity against treatment-resistant ALK mutants, whereas **lorlatinib**, which belongs to the third-generation drug, is highly selective proto-oncogene tyrosine-protein kinase ROS (ROS1) and ALK inhibitor and has the ability of robust brain penetration ^[69]. The second-generation EGFR TKIs, namely **dacomitinib** and **afatinib**, are characterized by their broader activity against HER family members and irreversibility, covalently binding to their targets of the kinases domain. They have the potential for anticancer activity against receptors with acquired mutations that are resistant to first-generation inhibitors. For example, **dacomitinib** specifically inhibits EGFR with exon 19 deletion or exon 21 L858R substitution mutations but also inhibits HER2, HER4 and transphosphorylation of HER3 ^[70].

Fibroblast growth factor receptor (FGFR) mutations are frequently observed in a variety of malignancies, e.g., FGFR2/3 alternations are common in urothelial carcinoma. **Erdafitinib**, a pan-FGFR inhibitor, is a promising therapy for cancers harboring these mutations. **Erdafitinib** obtained its first global approval in 2019 for the treatment of adult patients with locally advanced or metastatic urothelial carcinoma with FGFR alterations. The response to treatment was fast and independent of the number of previous therapies, the presence of visceral metastasis or tumor location ^[71]. The ongoing clinical trials show that **erdafitinib** demonstrated anticancer activity against other cancers, including cholangiocarcinoma, liver cancer, non-small cell lung cancer, prostate cancer, lymphoma and esophageal cancer ^[72]. The next drug approved by the FDA in 2019 is **pexidartinib**, which is used in the therapy of symptomatic tenosynovial giant cell tumor (TGCT). The drug is a selective inhibitor of the colony-stimulating factor 1 (CSF1) receptor, mast/stem cell growth factor receptor (c-Kit or CD117) and FMS-like tyrosine kinase 3 harboring an internal tandem duplication mutation (FLT3-ITD). The action mechanism of **pexidartinib** is to

arrest the kinase in the autoinhibited state by interacting with the CSF1R juxtamembrane region, which prevents an ATP and substrate binding ^[73].

The multi-kinase inhibitors that already obtained approval for the treatment of metastatic melanoma, an aggressive form of skin cancer with a high mortality rate, are second-generation serine/threonine-protein kinase B-Raf (B-Raf) inhibitors, such as vemurafenib, dabrafenib or encorafenib and mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitors, such as trametinib, cobimetinib or binimetinib. They are the most promising treatment strategies for melanoma consisting of selective inhibition of the active conformation of the B-Raf, especially with V600E mutation ^[74]. Furthermore, dabrafenib and encorafenib are also used in the therapy of cancers with several other mutated forms of B-Raf, e.g., V600K-mutated melanomas and V600K/D-mutated melanoma, respectively. The B-Raf inhibitors are characterized by high response rates, a mild, manageable toxicity profile and improved progression-free survival (PFS) as compared with chemotherapy, but their use is limited by the rapid development of resistance ^[75]. **Encorafenib** is distinguished among the other second-generation B-Raf kinase inhibitors by increasing its inhibitory effect with a shorter off-rate [76]. Currently, monotherapy with B-Raf inhibitor for the treatment of BRAF-mutated melanoma is subsequently replaced by combination therapy with B-Raf and MEK inhibitors, which target key enzymes in the MAPK signaling pathway (RAS-RAF-MEK-ERK). The approved combination of active anticancer ingredients, such as vemurafenib plus cobimetinib, dabrafenib plus trametinib or encorafenib plus binimetinib, is a more effective therapy than B-Raf inhibitor monotherapy and is recommended as a first-line therapeutic option in treating melanoma [77]. What is more, encorafenib and binimetinib combination therapy is already ongoing clinical development for the treatment of colorectal cancer (CRC). Selumetinib, the next inhibitor of MEK 1 and 2, is approved in children with neurofibromatosis type 1 and inoperable plexiform neurofibromas. The long-term treatment with selumetinib has meaningful benefits, such as a high level of clinical response and absence of cumulative toxic effects [78].

In 2020, the combination of **encorafenib** and monoclonal antibody (**cetuximab**) received its first approval for treating metastatic colorectal cancer (mCRC) ^[79]. CRC can also be treated with **regorafenib**, which is an inhibitor of VEGFR-1, VEGFR-2 and VEGFR-3, tunica interna endothelial cell kinase 2 (TIE2), PDGFRB, c-Kit, FGFR1, RET, RAF proto-oncogene serine/threonine-protein kinase (RAF-1) and B-Raf, including wild-type B-Raf and B-Raf V600E ^[80]. The inhibitor possesses antiangiogenic activity due to the inhibition of TIE2. Moreover, it has anticancer activity against gastrointestinal stromal tumor (GIST), hepatocellular carcinoma and is ongoing clinical development for various malignant tumors. Another two drugs, which were approved in 2020 for GIST, are **avapritinib** and **ripretinib**. They inhibit mast/stem cell growth factor receptor (c-Kit) and platelet-derived growth factor receptor α (PDGFRA). **Avapritinib** is a therapy only for GIST harboring a PDGFRA exon 18 mutations, including PDGFRA D842V mutations, whereas ripretinib inhibits wild-type c-Kit and PDGFRA mutations, as well as multiple primary and secondary resistance mutations in GIST ^[81]. **Ripretinib** is an appropriate treatment for patients who were resistant to other approved tyrosine kinase inhibitors, such as **regorafenib** or **imatinib**. The mechanism of its action involves durably binding to both the switch pocket in the intracellular juxtamembrane domain and the activation loop in the kinase domain to prevent from adopting an active state of kinase and locking it in the inactive conformation, thereby inhibiting cell proliferation ^[82].

A total of six drugs, which have been approved by the FDA since 2011 for thyroid cancer treatment, are antiangiogenic multi-kinase inhibitors, including vandetanib, cabozantinib and lenvatinib or mutation-specific inhibitors, including dabrafenib for BRAF-mutated anaplastic thyroid cancer (ATC), larotrectinib for NTRK-fusion thyroid cancer and selpercatinib for RET-mutant medullary thyroid cancer (MTC). Vandetanib and cabozantinib are registered for the treatment of advanced MTC. The drugs inhibit EGF, RET and VEGF receptors or the MET, RET and VEGF receptors, respectively. Thus, their action involves blocking the sustaining proliferative signaling mediated by tyrosine kinase receptors, angiogenesis and apoptosis. **Cabozantinib**, due to downregulation of the MET pathway, may prevent invasiveness and metastatic spread of cancer cells and the development of acquired resistance. Hence, it induces more prolonged clinical responses than those to other TKIs. What is more, it displays stronger antiangiogenic activity than vandetanib^[83]. However, the use of cabozantinib and vandetanib is at least partially limited by their adverse events. In contrast, next-generation drug selpercatinib, which is a highly potent and selective RET inhibitor, shows durable efficacy with a more satisfactory safety profile [84]. The first FDAapproved treatment for patients with anaplastic thyroid carcinomas (ATCs), a highly aggressive and undifferentiated cancer, is dabrafenib (B-Raf inhibitor) plus trametinib (MEK inhibitor). This dual inhibition improves overall response frequency and achieves better clinical results compared with B-Raf inhibitor monotherapy ^[85].

Larotrectinib is a highly selective TRK inhibitor that was developed for the therapy for cancers with a neurotrophic receptor tyrosine kinase (NTRK) gene fusion in adults and children [86]. All patients undergoing the larotrectinib treatment were characterized by advanced solid tumors, including salivary gland tumors, infantile fibrosarcoma, thyroid cancer, NSCLC and other cancers. Larotrectinib also has potential efficacy against CNS tumors because of its ability to cross the blood-brain barrier [87]. The only other registered TRK inhibitor apart from larotrectinib is entrectinib, with activity against ALK, TRK and ROS1. In clinical trials, responses to entrectinib treatment were observed in the following diseases: NSCLC, mammary analog secretory carcinoma (MASC), colorectal cancer, melanoma, glioneuronal tumor and renal cell carcinoma (RCC)^[88]. Lenvatinib is also used in therapy for RCC, as well as radioiodine-refractory differentiated thyroid cancer (RR-DTC), hepatocellular carcinoma and endometrial cancer. The inhibitor targets VEGFR-1, VEGFR-2, VEGFR-3, FGFR1-3, RET, mast/stem cell growth factor receptor (c-Kit) and platelet-derived growth factor receptor β (PDGFRB), thereby resulting in broad spectrum of direct antitumor activity and significant antiangiogenic effects [89]. Another drug for RCC is **axitinib**, which is approved for monotherapy in the second-line treatment and in combination with pembrolizumab or avelumab for first-line therapy [90][91]. It inhibits both proliferation and angiogenesis through blocking receptors, such as c-Kit and PDGFR on the one hand, and proangiogenic receptors VEGFR-1, VEGFR-2 and VEGFR-3 on the other. Axitinib has demonstrated promising activity in other solid tumors as well, including metastatic breast cancer, advanced NSCLC, pancreatic and thyroid cancers [92].

Table 3. Features of the multi-kinase inhibitors approved as drugs by the Food and Drug Administration (FDA) from 2011 to 2022. The order of drugs is tabulated in order of most recent to oldest registration date. A generic name of a drug is an international nonproprietary name (INN).

No.	Generic Name of Drug	Brand Name and Company	First FDA/EMA Approval Date	Structure	Molecula Target	r Route of Administration	Indication	Adverse Effects	Ref.
1	Ripretinib	QINLOCK Deciphera Pharmaceuticals, Inc., Waltham, MA, USA	FDA: 15 May 2020 EMA: 18 November 2021	anzia	c-Kit ¹ , PDGFRA 2	Oral	Gastrointestinal Stromal Tumor	Alopecia, fatigue, nausea, abdominal pain, constipation, myalgia, diarrhea, decreased appetite, palmar–plantar erythrodysesthesia syndrome, vomiting	[<u>93]</u> [<u>94]</u>
2	Selpercatinib	RETEVMO Eli Lilly and Company, Indianapolis, IN, USA	FDA: 8 May 2020 EMA: 11 February 2021	5000 ³	RET ³	Oral	Non-Small Cell Lung Cancer, Thyroid Cancer	Increased AST levels, increased glucose levels, decreased albumin levels, decreased leukocyte levels, decreased calcium levels, increased creatinine levels, dry mouth, diarrhea, increased alkaline phosphatase levels, hypertension, fatigue, decreased platelet levels, edema, increased total cholesterol levels, decreased sodium levels, rash, constipation, decreased magnesium levels, increased potassium levels, increased bilirubin levels, headache, decreased glucose levels, nausea, abdominal pain, cough, prolonged QT interval, dyspnea, vomiting, hemorrhage	[<u>95]</u> [<u>96]</u>
3	Selumetinib	KOSELUGO AstraZeneca, Cambridge, UK	FDA: 13 April 2020 EMA: 17 June 2021	The second s	MEK1 ⁴ , MEK2 ⁵	Oral	Neurofibromatosis Type 1	Vomiting, rash, abdominal pain, diarrhea, nausea, dry skin, musculoskeletal pain, fatigue, pyrexia, stomatitis, acneiform rash, headache,	[<u>97]</u> [<u>98</u>]

No.	Generic Name of Drug	Brand Name and Company	First FDA/EMA Approval Date	Structure	Molecular Target	r Route of Administration	Indication	Adverse Effects	Ref.
								paronychia, pruritus, dermatitis, constipation, hair changes, epistaxis, hematuria, proteinuria, decreased appetite, decreased cardiac ejection fraction, edema, sinus tachycardia, skin infection	
4	Avapritinib	AYVAKIT Blueprint Medicines Corporation, Cambridge, MA, USA	FDA: 9 January 2020 EMA: 24 September 2020	- <u>1</u> 0008	c-Kit ¹ , PDGFRA 2	Oral	Gastrointestinal Stromal Tumor	Edema, nausea, fatigue/asthenia, cognitive impairment, vomiting, decreased appetite, diarrhea, increased lacrimation, abdominal pain	[<u>99</u>] [<u>100</u>]
5	Entrectinib	ROZLYTREK Genentech, Inc., South San Francisco, CA, USA	FDA: 15 August 2019 EMA: 31 July 2020	مېنې م	TRK ⁶ , ROS1 ⁷ , ALK ⁸	Oral	Solid Tumors, Non-Small Cell Lung Cancer	Dysgeusia, fatigue, dizziness, constipation, nausea, diarrhea, increased weight, paresthesia, increased blood creatinine, myalgia, peripheral edema, vomiting, anemia, arthralgia, increased aspartate aminotransferase (AST)	[<u>101]</u> [<u>102</u>]
6	Pexidartinib	TURALIO Daiichi Sankyo, Tokyo, Japan	FDA: 2 August 2019 EMA: Not approved	raj ^{arat}	CSF1R ⁹ , c-Kit ¹ , FLT3 ¹⁰	Oral	Tenosynovial Giant Cell Tumor	Hair color changes (depigmentation), fatigue, increased AST, increased alanine aminotransferase (ALT), dysgeusia, vomiting, periorbital edema, abdominal pain, decreased appetite, pruritus, hypertension, increased alkaline phosphatase	[<u>103]</u> [<u>104]</u>

No.	Generic Name of Drug	Brand Name and Company	First FDA/EMA Approval Date	Structure	Molecula Target	r Route of Administration	Indication	Adverse Effects	Ref.
7	Erdafitinib	BALVERSA Janssen Pharmaceuticals, Inc., Raritan (HQ), NJ, USA	FDA: 12 April 2019 EMA: Not approved	-djaro-	FGFRs ¹¹ (1, 2, 3, 4)	Oral	Urothelial Carcinoma	Increased phosphate levels, stomatitis, fatigue, diarrhea, dry mouth, onycholysis, decreased appetite, dysgeusia, dry skin, dry eye, alopecia, palmar–plantar erythrodysaesthesia syndrome, constipation, abdominal pain, nausea, musculoskeletal pain	[72]
8	Larotrectinib	VITRAKVI Loxo Oncology, Inc., Stamford, CT, USA	FDA: 26 November 2018 EMA: 19 September 2019	k,A.S.	TRK ⁶	Oral	TRK Fusion Cancers	Fatigue, nausea, dizziness, vomiting, anemia, increased transaminase levels, cough, constipation, diarrhea	[<u>105]</u> [<u>106</u>]
9	Lorlatinib	LORBRENA Pfizer Inc., New York City, NY, USA	FDA: 2 November 2018 EMA: 6 May 2019	de f	ALK ⁸ , ROS1 ⁷	Oral	Non-Small Cell Lung Cancer	Hypercholesterolemia, hypertriglyceridemia, edema, peripheral neuropathy	[<u>107]</u> [<u>108</u>]
10	Dacomitinib	VIZIMPRO Pfizer Inc., New York City, NY, USA	FDA: 27 September 2018 EMA: 2 April 2019	مىئىيە	EGFR ¹² , HER2 ¹³ , HER4 ₁₄	Oral	Non-Small Cell Lung Cancer	Diarrhea, paronychia, dermatitis acneiform, stomatitis, decreased appetite	[<u>109]</u> [<u>110]</u>
11	Encorafenib	BRAFTOVI Pfizer Inc., New York City, NY, USA	FDA: 27 June 2018 EMA: 20 September 2018	2 salarat	B-Raf ¹⁵	Oral	Melanoma Metastatic, Colorectal Cancer	Nausea, diarrhea, vomiting, fatigue, arthralgia	(<u>111</u>) (<u>112</u>)

No.	Generic Name of Drug	Brand Name and Company	First FDA/EMA Approval Date	Structure	Molecula Target	r Route of Administration	Indication	Adverse Effects	Ref.
12	Binimetinib	MEKTOVI Array BioPharma Inc., Boulder, CO, USA	FDA: 27 June 2018 EMA: 20 September 2018		MEK1 ⁴ , MEK2 ⁵	Oral	Melanoma Metastatic	Nausea, diarrhea, vomiting, fatigue, arthralgia	[111] [<u>113</u>]
13	Brigatinib	ALUNBRIG Takeda Pharmaceuticals America, Inc., Deerfield, IL, USA	FDA: 28 April 2017 EMA: 22 November 2018	-0-0-0- 8- 9-	ALK ⁸ , EGFR ¹²	Oral	Non-Small Cell Lung Cancer	Nausea, diarrhea, fatigue, cough, headache, CPK elevation, pancreatic enzyme elevation, hyperglycemia	[<u>114]</u> [<u>115</u>]
14	Alectinib	ALECENSA Genentech, Inc., South San Francisco, CA, USA	FDA: 11 December 2015 EMA: 16 February 2017	_0700 ⁰⁰	ALK ⁸	Oral	Non-Small Cell Lung Cancer	Constipation, nausea, diarrhea, vomiting, edema, increased levels of bilirubin, AST and ALT, myalgia, rash, anemia, increase in bodyweight	[<u>116]</u> [<u>117]</u>
15	Cobimetinib	COTELLIC Genentech, Inc., South San Francisco, CA, USA	FDA: 10 November 2015: EMA: 20 November 2015.		MEK1 ⁴ , MEK2 ⁵	Oral	Melanoma Metastatic	Diarrhea, nausea, rash, arthralgia, fatigue, increased creatine phosphokinase levels	[<u>118]</u> [<u>119</u>]
16	Lenvatinib	LENVIMA Eisai Inc., Tokyo, Japan, U.S. Corporate Headquarters in Nutley, NJ, USA	FDA: 13 February 2015 EMA: 28 May 2015	τας.	VEGFRS ¹⁶ (1, 2, 3), FGFR ¹¹ (1, 2, 3, 4), PDGFRA ² , RET ³ , c-Kit ¹	Oral	Thyroid Cancer, Renal Cell Carcinoma, Hepatocellular Carcinoma, Endometrial Cancer	Hypertension, diarrhea, fatigue or asthenia, decreased appetite, bodyweight decreased, nausea, stomatitis, palmar– plantar erythrodysethaesia syndrome, proteinuria	[<u>120]</u> [<u>121</u>]
17	Afatinib	GILOTRIF Boehringer Ingelheim	FDA: 12 July 2013	ango ta	EGFR ¹² , HER2	Oral	Non-Small Cell Lung Cancer	Diarrhea, rash/acne, stomatitis/mucositis, paronychia, dry skin,	[<u>122</u>] [<u>123</u>]

No.	Generic Name of Drug	Brand Name and Company	First FDA/EMA Approval Date	Structure	Ũ	Route of Administration	Indication	Adverse Effects	Ref.	
		Pharmaceuticals, Inc., Ingelheim, Germany	EMA: 25 September 2013		¹³ , HER4 14			decreased appetite, pruritus, nausea, fatigue, vomiting, epistaxis, cheilitis		
18	Trametinib	MEKINIST GlaxoSmithKline, London, UK	FDA: 29 May 2013 EMA: 30 June 2014	ratua	MEK1 ⁴ , MEK2 ⁵	Oral	Melanoma, Metastatic, Non- Small Cell Lung Cancer, Thyroid Cancer	Rash, diarrhea, fatigue, nausea/vomiting, peripheral edema	[<u>124]</u> [<u>125</u>]	_
19	Dabrafenib	TAFINLAR GlaxoSmithKline, London, UK	FDA: 29 May 2013 EMA: 26 August 2013		B-Raf ¹⁵	Oral	Melanoma, Metastatic, Non- Small Cell Lung Cancer, Thyroid Cancer	Alopecia, arthralgia, back pain, constipation, cough, erythrodysaesthesia, fever, headache, hyperkeratosis, muscle pain, nasopharyngitis, papilloma, squamous cell cancer	[<u>126]</u> [<u>127]</u>	Clinica
20	Cabozantinib	CABOMETYX Exelixis, Inc., Alameda, CA, USA	FDA: 25 April 2016 EMA: 9 September 2016	200 07 0	MET ¹⁷ , RET ³ , VEGFRS ¹⁶ (1, 2, 3), c-Kit ¹ , FLT-3 ¹⁰ , TIE2 ¹⁸ , TRKB ¹⁹ , AXL ₂₀	Oral	Renal Cell Carcinoma, Hepatocellular Carcinoma	Diarrhea, fatigue, nausea, vomiting, decreased appetite, hypertension, palmar– plantar erythrodysesthesia syndrome	[<u>128]</u> [<u>129]</u> [<u>130]</u>	atiHu
21	Cabozantinib	COMETRIQ Exelixis, Inc., Alameda, CA, USA	FDA: 29 November 2012 EMA: 21 March 2014	2000 A	MET ¹⁷ , RET ³ , VEGFRS ¹⁶ (1, 2, 3), c-Kit ¹ , FLT-3 ¹⁰ , TIE2 ¹⁸ , TRKB ¹⁹ , AXL ₂₀	Oral	Thyroid Cancer	Diarrhea, stomatitis, palmar–plantar erythrodysesthesia syndrome, decreased weight, decreased appetite, nausea, fatigue, oral pain, hair color changes, dysgeusia, hypertension, abdominal pain, constipation, increased AST, increased ALT,	(<u>131</u>) (<u>132</u>) (<u>133</u>)	and 2019 , ctor

Heinz-Josef Lenz; Fotios Loupakis; Francesca Battaglin; Safety and Tolerability of c-MET Inhibitors in Cancer. *Drug Safety* **2019**, *42*, 211-233, 10.1007/s40264-018-0780-x.

- Priscilla Cascetta; Vincenzo Sforza; Anna Manzo; Guido Carillio; Giuliano Palumbo; Giovanna Esposito; Agnese Montanino; Raffaele Costanzo; Claudia Sandomenico; Rossella De Cecio; et al.Maria Carmela PiccirilloCarmine La MannaGiuseppe TotaroPaolo MutoCarmine PiconeRoberto BiancoNicola NormannoAlessandro Morabito RET Inhibitors in Non-Small-Cell Lung Cancer. *Cancers* 2021, *13*, 4415, 10.3390/cancers13174415.
- 10. Julia Rotow; Trever G. Bivona; Understanding and targeting resistance mechanisms in NSCLC. *Nature Reviews Cancer* **2017**, *17*, 637-658, 10.1038/nrc.2017.84.

1	No.	Generic Name of Drug	Brand Name and Company	First FDA/EMA Approval Date	Structure	Molecular Target	Route of Administration	Indication	Adverse Effects	Ref.	al;
1									lymphopenia, increased alkaline phosphatase, hypocalcemia, neutropenia, thrombocytopenia, hypophosphatemia, and hyperbilirubinemia		ء Von– 346. 2022-4
1	22	Regorafenib	STIVARGA Bayer HealthCare Pharmaceuticals Inc., Whippany, NJ, USA	FDA: 27 September 2012 EMA: 26 August 2013	Xora, S	VEGFRs ¹⁶ (1, 2, 3), RET ³ , c-Kit ¹ , PDGFRs ²¹ (A, B), FGFRs ¹¹ (1, 2), TIE2 ¹⁸ , B-Raf ¹⁵ , RAF-1 ²²	Oral	Colorectal Cancer, Gastrointestinal Stromal Tumor, Hepatocellular Carcinoma	Asthenia/fatigue, decreased appetite and food intake, hand-foot skin reaction, palmar– plantar erythrodysesthesia, diarrhea, mucositis, weight loss, infection, hypertension, dysphonia	(<u>134</u>) (<u>135</u>) (<u>136</u>)	na ia iDavid onella ALK
1	23	Axitinib	INLYTA Pfizer Inc., New York City, NY, USA	FDA: 27 January 2012 EMA: 3 September 2012	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	VEGFRs ¹⁶ (1, 2, 3), c-Kit 1, PDGFRs ²¹ (A, B)	Oral	Renal Cell Carcinoma	Diarrhea, hypertension, fatigue, decreased appetite, nausea, dysphonia, palmar–plantar erythrodysesthesia (hand-foot) syndrome, weight decreased, vomiting, asthenia, constipation	(<u>137</u>) (<u>138</u>) (<u>139</u>)	e E.
1	24	Crizotinib	XALKORI Pfizer Inc., New York City, NY, USA	FDA: 26 August 2011 EMA: 23 October 2012	કર્સ્ટ્ર	ALK ⁸ , MET ¹⁷ , ROS1 ⁷	Oral	Non-Small Cell Lung Cancer	Vision disorders, nausea, diarrhea, vomiting, edema, constipation, elevated transaminases, fatigue, decreased appetite, upper respiratory infection, dizziness, neuropathy	(<u>140</u>) (<u>141</u>) (<u>142</u>)	nib in ?, 41- Cortot
	25	Vemurafenib	ZELBORAF Genentech, Inc., South San Francisco, CA, USA	FDA: 17 August 2011 EMA: 17	Ello a	B-Raf ¹⁵	Oral	Melanoma Metastatic	Arthralgia, rash, alopecia, fatigue, photosensitivity reaction, nausea,	(<u>143)</u> (<u>144</u>) (<u>145</u>)	⊧ا J. ≀t

- 16. Francois Gonzalvez; Sylvie Vincent; Theresa E. Baker; Alexandra E. Gould; Shuai Li; Scott D. Wardwell; Sara Nadworny; Yaoyu Ning; Sen Zhang; Wei-Sheng Huang; et al. Yongbo HuFeng LiMatthew T. GreenfieldStephan G. ZechBiplab DasNarayana I. NarasimhanTim ClacksonDavid DalgarnoWilliam C. ShakespeareMichael FitzgeraldJohara ChouitarRobert J. GriffinShengwu LiuKwok-Kin WongXiaotian ZhuVictor M. Rivera Mobocertinib (TAK-788): A Targeted Inhibitor of *EGFR* Exon 20 Insertion Mutants in Non–Small Cell Lung Cancer. *Cancer Discovery* 2021, *11*, 1672-1687, 10.1158/2159-8290.cd-20-1683.
- 17. Johan Filip Vansteenkiste; Charlotte Van De Kerkhove; Els Wauters; Pierre Van Mol; Capmatinib for the treatment of non-small cell lung cancer. *Expert Review of Anticancer Therapy* **2019**, *19*, 659-671, 10.1080/14737140.2019.1643239.

1	No.	Generic Name of Drug	Brand Name and Company	First FDA/EMA Approval Date	Structure	Molecular Target	r Route of Administration	Indication	Adverse Effects	Ref.	ssino; Is
				February 2012							ik vivia
	26	Vandetanib	CAPRELSA AstraZeneca, Cambridge, UK	FDA: 6 April 2011 EMA: 17 February 2012		VEGFR- 2 ²³ , EGFR ¹² , RET ³	Oral	Thyroid Cancer	Diarrhea, rash, nausea, hypertension, fatigue, headache, decreased appetite, acne, dermatitis acneiform, dry skin, photosensitivity reaction, erythema	[<u>146]</u> [<u>147</u>]	-3Yuh-)her)potinib <i>nal of</i>

 NERLYNX (neratinib). Prescribing Information. . U.S Food & Drug Administration. Retrieved 2022-4-21

20. TUKYSA (tucatinib). Prescribing Information. . U.S Food & Drug Administration. Retrieved 2022-4-

¹ c-Kit: mast/stem cell growth factor receptor. ² PDGFRA: platelet-derived growth factor receptor α. ³ RET: 24ceptistingacSinuaracin/Masfaldan@higediratu/fing-Hounsf& enorg; MinuerShemiDogienStrainged/enorelineikinSaseakAnase 1.

⁵ MEK2/itzitSjænga BæetKinp; dæivetha Medyin Stezetter Retal aloge mildi bliame copauli synasjnet kin Aterik at OS1: protoondvlæsteda Maineepao Parladoosa Mause en Ek: Tatua ja astidoljanphan Mattissore Y 8 ors Sim: Yapo Mingin Fidating factor 1 receptour Michaelinso Destakter eyntisis van Hivitas Yah Hong Fitsi: Ciberna astidoljanphan Mattissore Y 8 ors Sim: Yapo Mingin Fidating factor 1 growtal ega aniete pfrag haner eyntisis van Hivitas Yah Hong Fitsi: Ciberna astidoljanphan Mattissore Y 8 ors Sim: Yapo Mingin Fidating factor 1 growtal ega aniete pfrag haner eyntisis van Hivitas Yah Hong Fitsi: Ciberna astidoljan on de trady fas at o¹⁴ Taker was histore hip id Eakan growta bias on de trady fas at o¹⁴ Taker was histore hip id Eakan growta bias on de trady fas at o¹⁴ Taker was histore hip id Eakan growta bias on de trady fas at o¹⁴ Taker was histore hip id Eakan growta bias on de trady fas at o¹⁴ Taker was histore hip id Eakan growta bias on de trady fas at o¹⁴ Taker was histore hip id Eakan growta bias on de trady fas at o¹⁴ Taker was histore hip id Eakan growta bias on de trady fas at o¹⁴ Taker was histore hip id Eakan growta bias on de trady fas at o¹⁴ Taker was histore hip id Eakan growta bias on de trady fas at o¹⁴ Taker was histore hip id Eakan growta bias on de trady fas at o¹⁴ Taker was histore hip id Eakan growta bias of the trady fas at other trady fas at the fast of the trady fas at the fast of the trady fast

groWthNfActArTreaeplousrrfal RAE/IniEa/FQnoulogy/2020, Sein3/1886/31/49prbleib200/jse.20.0664FR-2: vascular endothelial growth factor receptor-2 22. Rashmr K. Murthy; Sherene Loi; Alicia Okines; Elisavet Paplomata; Erika Hamilton; Sara A.

- 22. RashmrK. Murthy; Sherene Loi; Alicia Okines; Elisavet Paplomata; Erika Hamilton; Sara A. Hurvitz; Nancy U. Lin; Virginia Borges; Vandana Abramson; Carey Anders; et al.Philippe L. BedardMafalda OliveiraErik JakobsenThomas BachelotShlomit S. ShacharVolkmar MüllerSofia BragaFrancois P. DuhouxRichard GreilDavid CameronLisa A. CareyGiuseppe CuriglianoKaren GelmonGabriel Hortobagyilan KropSibylle LoiblMark PegramDennis SlamonM. Corinna Palanca-WesselsLuke WalkerWentao FengEric P. Winer Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. *New England Journal of Medicine* 2020, 382, 597-609, 10.1056/nejmoa1914609.
- 23. Anita Kulukian; Patrice Lee; Janelle Taylor; Robert Rosler; Peter De Vries; Daniel Watson; Andres Forero-Torres; Scott Peterson; Preclinical Activity of HER2-Selective Tyrosine Kinase Inhibitor Tucatinib as a Single Agent or in Combination with Trastuzumab or Docetaxel in Solid Tumor Models. *Molecular Cancer Therapeutics* **2020**, *19*, 976-987, 10.1158/1535-7163.mct-19-0873.
- 24. Sridhar K. Rabindran; Carolyn M. Discafani; Edward Rosfjord; Michelle Baxter; M. Brawner Floyd; Jonathan Golas; William A. Hallett; Bernard D. Johnson; Ramaswamy Nilakantan; Elsebe Overbeek; et al.Marvin F. ReichRu ShenXiaoqing ShiHwei-Ru TsouYu-Fen WangAllan Wissner

Antitumor Activity of HKI-272, an Orally Active, Irreversible Inhibitor of the HER-2 Tyrosine Kinase. *Cancer Research* **2004**, *64*, 3958-3965, 10.1158/0008-5472.can-03-2868.

- 25. Ghassan K Abou-Alfa; Vaibhav Sahai; Antoine Hollebecque; Gina Vaccaro; Davide Melisi; Raed Al-Rajabi; Andrew S Paulson; Mitesh J Borad; David Gallinson; Adrian G Murphy; et al.Do-Youn OhEfrat DotanDaniel V CatenacciEric Van CutsemTao JiChristine F LihouHuiling ZhenLuis FélizArndt Vogel Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. *The Lancet Oncology* **2020**, *21*, 671-684, 10.1016/s1470-2045(20)30109-1.
- 26. Milind Javle; Sameek Roychowdhury; Robin Kate Kelley; Saeed Sadeghi; Teresa Macarulla; Karl Heinz Weiss; Dirk-Thomas Waldschmidt; Lipika Goyal; Ivan Borbath; Anthony El-Khoueiry; et al.Mitesh J BoradWei Peng YongPhilip A PhilipMichael BitzerSurbpong TanasanvimonAi LiAmit PandeHarris S SoiferStacie Peacock ShepherdSusan MoranAndrew X ZhuTanios S Bekaii-SaabGhassan K Abou-Alfa Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study. *The Lancet Gastroenterology & Hepatology* 2021, 6, 803-815, 10.1016/s2468-1253(21)00196-5.
- 27. PEMAZYRE (pemigatinib). Prescribing information. . U.S Food & Drug Administration. Retrieved 2022-4-21
- 28. TRUSELTIQ (infigratinib). Prescribing information. . U.S Food & Drug Administration. Retrieved 2022-4-21
- 29. Saadia A Aziz; Joshua Sznol; Adebowale Adeniran; John W Colberg; Robert L Camp; Harriet M Kluger; Vascularity of primary and metastatic renal cell carcinoma specimens. *Journal of Translational Medicine* **2013**, *11*, 15-15, 10.1186/1479-5876-11-15.
- 30. Muhammad Omer Jamil; Amanda Hathaway; AmitKumar Mehta; Tivozanib: Status of Development. *Current Oncology Reports* **2015**, *17*, 1-7, 10.1007/s11912-015-0451-3.
- Brian I Rini; Sumanta K Pal; Bernard J Escudier; Michael B Atkins; Thomas Hutson; Camillo Porta; Elena Verzoni; Michael N Needle; David F McDermott; Tivozanib versus sorafenib in patients with advanced renal cell carcinoma (TIVO-3): a phase 3, multicentre, randomised, controlled, open-label study. *The Lancet Oncology* **2019**, *21*, 95-104, 10.1016/s1470-2045(19)307 35-1.
- 32. FOTIVDA (tivozanib). Prescribing information. . Aveo Oncology. Retrieved 2022-4-21
- 33. Anthony Markham; Mobocertinib: First Approval. *Drugs* **2021**, *81*, 2069-2074, 10.1007/s40265-02 1-01632-9.
- 34. Connie Kang; Infigratinib: First Approval. *Drugs* **2021**, *81*, 1355-1360, 10.1007/s40265-021-01567 -1.

- 35. Infigratinib for the treatment of cholangiocarcinoma. . European Medicines Agency.. Retrieved 2022-4-21
- 36. Esther S. Kim; Tivozanib: First Global Approval. *Drugs* **2017**, *77*, 1917-1923, 10.1007/s40265-017 -0825-y.
- 37. Fotivda: EPAR Product Information. . European Medicines Agency. Retrieved 2022-4-21
- 38. Anthony Markham; Tepotinib: First Approval. *Drugs* **2020**, *80*, 829-833, 10.1007/s40265-020-0131 7-9.
- 39. Anthony Markham; Pralsetinib: First Approval. *Drugs* **2020**, *80*, 1865-1870, 10.1007/s40265-020-01427-4.
- 40. Gavreto: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 41. Sohita Dhillon; Capmatinib: First Approval. *Drugs* **2020**, *80*, 1125-1131, 10.1007/s40265-020-013 47-3.
- 42. Sheridan M. Hoy; Pemigatinib: First Approval. *Drugs* **2020**, *80*, 923-929, 10.1007/s40265-020-013 30-y.
- 43. Pemazyre: EPAR Product Information. . European Medicines Agency. Retrieved 2022-4-21
- 44. Arnold Lee; Tucatinib: First Approval. Drugs 2020, 80, 1033-1038, 10.1007/s40265-020-01340-w.
- 45. Tukysa: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 46. Emma D. Deeks; Neratinib: First Global Approval. *Drugs* **2017**, 77, 1695-1704, 10.1007/s40265-0 17-0811-4.
- 47. Nerlynx: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 48. Sarah L. Greig; Osimertinib: First Global Approval. *Drugs* **2016**, *76*, 263-273, 10.1007/s40265-015 -0533-4.
- 49. Tagrisso: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 50. Sohita Dhillon; Madeleine Clark; Ceritinib: First Global Approval. *Drugs* **2014**, *74*, 1285-1291, 10.1 007/s40265-014-0251-3.
- 51. Zykadia: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 52. Robert Roskoski; Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. *Pharmacological Research* **2018**, *139*, 471-488, 10.1016/j.phrs.2018.11.035.
- Concepción Sánchez-Martínez; María José Lallena; Sonia Gutiérrez Sanfeliciano; Alfonso de Dios; Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015– 2019). *Bioorganic & Medicinal Chemistry Letters* 2019, 29, 126637, 10.1016/j.bmcl.2019.126637.

- Francesco Schettini; Irene De Santo; Carmen G. Rea; Pietro De Placido; Luigi Formisano; Mario Giuliano; Grazia Arpino; Michelino De Laurentiis; Fabio Puglisi; Sabino De Placido; et al.Lucia Del Mastro CDK 4/6 Inhibitors as Single Agent in Advanced Solid Tumors. *Frontiers in Oncology* 2018, *8*, 608, 10.3389/fonc.2018.00608.
- 55. Julia A. Beaver; Laleh Amiri-Kordestani; Rosane Charlab; Wei Chen; Todd Palmby; Amy Tilley; Jeanne Fourie Zirkelbach; Jingyu Yu; Qi Liu; Liang Zhao; et al.Joyce CrichXiao Hong ChenMinerva HughesErik BloomquistShenghui TangRajeshwari SridharaPaul G. KluetzGeoffrey KimAmna IbrahimRichard PazdurPatricia Cortazar FDA Approval: Palbociclib for the Treatment of Postmenopausal Patients with Estrogen Receptor–Positive, HER2-Negative Metastatic Breast Cancer. *Clinical Cancer Research* **2015**, *21*, 4760-4766, 10.1158/1078-0432.ccr-15-1185.
- 56. Amanda J. Walker; Suparna Wedam; Laleh Amiri-Kordestani; Erik Bloomquist; Shenghui Tang; Rajeshwari Sridhara; Wei Chen; Todd R. Palmby; Jeanne Fourie Zirkelbach; Wentao Fu; et al.Qi LiuAmy TilleyGeoffrey KimPaul G. KluetzAmy E. McKeeRichard Pazdur FDA Approval of Palbociclib in Combination with Fulvestrant for the Treatment of Hormone Receptor–Positive, HER2-Negative Metastatic Breast Cancer. *Clinical Cancer Research* **2016**, *22*, 4968-4972, 10.11 58/1078-0432.ccr-16-0493.
- 57. Joyce O'Shaughnessy; Katarina Petrakova; Gabe S. Sonke; Pierfranco Conte; Carlos L. Arteaga; David A. Cameron; Lowell L. Hart; Cristian Villanueva; Erik Jakobsen; Joseph T. Beck; et al.Deborah LindquistFarida SouamiShoubhik MondalCaroline GermaGabriel N. Hortobagyi Ribociclib plus letrozole versus letrozole alone in patients with de novo HR+, HER2– advanced breast cancer in the randomized MONALEESA-2 trial. *Breast Cancer Research and Treatment* 2017, *168*, 127-134, 10.1007/s10549-017-4518-8.
- 58. Amita Patnaik; Lee S. Rosen; Sara M. Tolaney; Anthony W. Tolcher; Jonathan W. Goldman; Leena Gandhi; Kyriakos P. Papadopoulos; Muralidhar Beeram; Drew W. Rasco; John F. Hilton; et al.Aejaz NasirRichard P. BeckmannAndrew E. SchadeAngie D. FulfordTuan S. NguyenRicardo MartinezPalaniappan KulanthaivelBeeram MuralidharMartin FrenzelDamien M. CronierEdward M. ChanKeith T. FlahertyPatrick Y. WenGeoffrey I. Shapiro Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non–Small Cell Lung Cancer, and Other Solid Tumors. *Cancer Discovery* 2016, 6, 740-753, 10.1158/2159-8290.cd-16-0095.
- 59. Thomas J. Raub; Graham N. Wishart; Palaniappan Kulanthaivel; Brian A. Staton; Rose T. Ajamie; Geri A. Sawada; Lawrence M. Gelbert; Harlan E. Shannon; Concepcion Sanchez-Martinez; Alfonso De Dios; et al. Brain Exposure of Two Selective Dual CDK4 and CDK6 Inhibitors and the Antitumor Activity of CDK4 and CDK6 Inhibition in Combination with Temozolomide in an Intracranial Glioblastoma Xenograft. *Drug Metabolism and Disposition* **2015**, *43*, 1360-1371, 10.1 124/dmd.114.062745.
- 60. Sara M. Tolaney; Solmaz Sahebjam; Emilie Le Rhun; Thomas Bachelot; Peter Kabos; Ahmad Awada; Denise Yardley; Arlene Chan; Pierfranco Conte; Véronique Diéras; et al.Nancy U.

LinMelissa BearSonya C. ChapmanZhengyu YangYanyun ChenCarey K. Anders A Phase II Study of Abemaciclib in Patients with Brain Metastases Secondary to Hormone Receptor–Positive Breast Cancer. *Clinical Cancer Research* **2020**, *26*, 5310-5319, 10.1158/1078-0432.ccr-20-1764.

- 61. Esther S. Kim; Abemaciclib: First Global Approval. *Drugs* **2017**, *77*, 2063-2070, 10.1007/s40265-0 17-0840-z.
- 62. Verzenios: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 63. Yahiya Y. Syed; Ribociclib: First Global Approval. *Drugs* **2017**, *77*, 799-807, 10.1007/s40265-017-0742-0.
- 64. Kisqali: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 65. Sohita Dhillon; Palbociclib: First Global Approval. *Drugs* **2015**, 75, 543-551, 10.1007/s40265-015-0379-9.
- 66. Ibrance: EPAR Product Information. . European Medicines Agency. Retrieved 2022-4-21
- 67. Martin Krug; Recent Advances in the Development of Multi-Kinase Inhibitors. *Mini-Reviews in Medicinal Chemistry* **2008**, *8*, 1312-1327, 10.2174/138955708786369591.
- 68. Fleur Broekman; Tyrosine kinase inhibitors: Multi-targeted or single-targeted?. *World Journal of Clinical Oncology* **2011**, *2*, 80-93, 10.5306/wjco.v2.i2.80.
- 69. Elena Ardini; Maria Menichincheri; Patrizia Banfi; Roberta Bosotti; Cristina De Ponti; Romana Pulci; Dario Ballinari; Marina Ciomei; Gemma Texido; Anna Degrassi; et al.Nilla AvanziNadia AmboldiMaria Beatrice SaccardoDaniele CaseroPaolo OrsiniTiziano BandieraLuca MologniDavid AndersonGe WeiJason HarrisJean-Michel VernierGang LiEduard FelderDaniele DonatiAntonella IsacchiEnrico PesentiPaola MagnaghiArturo Galvani Entrectinib, a Pan–TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. *Molecular Cancer Therapeutics* **2016**, *15*, 628-639, 10.1158/1535-7163.mct-15-0758.
- Shouzheng Wang; Junling Li; Second-generation EGFR and ErbB tyrosine kinase inhibitors as first-line treatments for non-small cell lung cancer. *OncoTargets and Therapy* 2019, *ume* 12, 6535-6548, 10.2147/OTT.S198945.
- 71. Yohann Loriot; Andrea Necchi; Se Hoon Park; Jesus Garcia-Donas; Robert Huddart; Earle Burgess; Mark Fleming; Arash Rezazadeh; Begoña Mellado; Sergey Varlamov; et al.Monika Joshilgnacio DuranScott T. TagawaYousef ZakhariaBob ZhongKim StuyckensAdemi Santiago-WalkerPeter De PorreAnne O'HaganAnjali AvadhaniArlene Siefker-Radtke Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. *New England Journal of Medicine* **2019**, *381*, 338-348, 10.1056/nejmoa1817323.
- 72. Anthony Markham; Erdafitinib: First Global Approval. *Drugs* **2019**, 79, 1017-1021, 10.1007/s4026 5-019-01142-9.

- 73. William D. Tap; Zev A. Wainberg; Stephen P. Anthony; Prabha N. Ibrahim; Chao Zhang; John Healey; Bartosz Chmielowski; Arthur P. Staddon; Allen Lee Cohn; Geoffrey I. Shapiro; et al.Vicki L. KeedyArun S. SinghIgor PuzanovEunice L. KwakAndrew J. WagnerDaniel D. Von HoffGlen J. WeissRamesh K. RamanathanJiazhong ZhangGaston HabetsYing ZhangElizabeth A. BurtonGary VisorLaura SanftnerPaul SeversonHoa NguyenMarie J. KimAdhirai MarimuthuGarson TsangRafe ShellooeCarolyn GeeBrian WestPeter HirthKeith NolopMatt Van De RijnHenry H. HsuCharles PeterfyPaul S. LinSandra Tong-StarksenGideon Bollag Structure-Guided Blockade of CSF1R Kinase in Tenosynovial Giant-Cell Tumor. *New England Journal of Medicine* 2015, 373, 428-437, 10.1056/nejmoa1411366.
- 74. Rajmohan Murali; Alexander M Menzies; Gv Long; Dabrafenib and its potential for the treatment of metastatic melanoma. *Drug Design, Development and Therapy* **2012**, *6*, 391-405, 10.2147/ddd t.s38998.
- 75. James Sun; Jonathan S. Zager; Zeynep Eroglu; Encorafenib/binimetinib for the treatment of BRAF-mutant advanced, unresectable, or metastatic melanoma: design, development, and potential place in therapy. *OncoTargets and Therapy* **2018**, *ume 11*, 9081-9089, 10.2147/ott.s171 693.
- 76. Reinhard Dummer; Paolo A Ascierto; Helen J Gogas; Ana Arance; Mario Mandala; Gabriella Liszkay; Claus Garbe; Dirk Schadendorf; Ivana Krajsova; Ralf Gutzmer; et al.Vanna Chiarion SileniCaroline DutriauxJan Willem B de GrootNaoya YamazakiCarmen LoquaiLaure A Moutouh-De ParsevalMichael D PickardVictor SandorCaroline RobertKeith T Flaherty Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF -mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. *The Lancet Oncology* 2018, 19, 603-615, 10.1016/s1470-2045(18)30142-6.
- 77. Robert Roskoski; Targeting oncogenic Raf protein-serine/threonine kinases in human cancers. *Pharmacological Research* **2018**, *135*, 239-258, 10.1016/j.phrs.2018.08.013.
- 78. Andrea M. Gross; Pamela L. Wolters; Eva Dombi; Andrea Baldwin; Patricia Whitcomb; Michael J. Fisher; Brian Weiss; AeRang Kim; Miriam Bornhorst; Amish C. Shah; et al.Staci MartinMarie C. RoderickDominique C. PichardAmanda CarbonellScott M. PaulJanet TherrienOxana KapustinaKara HeiseyD. Wade ClappChi ZhangCody J. PeerWilliam D. FiggMalcolm SmithJohn GlodJaishri O. BlakeleySeth M. SteinbergDavid J. VenzonL. Austin DoyleBrigitte C. Widemann Selumetinib in Children with Inoperable Plexiform Neurofibromas. *New England Journal of Medicine* 2020, *382*, 1430-1442, 10.1056/nejmoa1912735.
- 79. Scott Kopetz; Axel Grothey; Rona Yaeger; Eric Van Cutsem; Jayesh Desai; Takayuki Yoshino; Harpreet Wasan; Fortunato Ciardiello; Fotios Loupakis; Yong Sang Hong; et al.Neeltje SteeghsTormod K. GurenHendrik-Tobias ArkenauPilar Garcia-AlfonsoPer PfeifferSergey OrlovSara LonardiElena ElezTae-Won KimJan H.M. SchellensChristina GuoAsha KrishnanJeroen DekervelVan MorrisAitana Calvo FerrandizL.S. TarpgaardMichael BraunAshwin

GollerkeriChristopher KeirKati MaharryMichael PickardJanna Christy-BittelLisa AndersonVictor SandorJosep Tabernero Encorafenib, Binimetinib, and Cetuximab in *BRAF* V600E–Mutated Colorectal Cancer. *New England Journal of Medicine* **2019**, *381*, 1632-1643, 10.1056/nejmoa190 8075.

- 80. Dirk Strumberg; Beate Schultheis; Regorafenib for cancer. *Expert Opinion on Investigational Drugs* **2012**, *21*, 879-889, 10.1517/13543784.2012.684752.
- 81. Jean-Yves Blay; César Serrano; Michael C Heinrich; John Zalcberg; Sebastian Bauer; Hans Gelderblom; Patrick Schöffski; Robin L Jones; Steven Attia; Gina D'Amato; et al.Ping ChiPeter ReichardtJulie MeadeKelvin ShiRodrigo Ruiz-SotoSuzanne GeorgeMargaret von Mehren Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): a double-blind, randomised, placebo-controlled, phase 3 trial. *The Lancet Oncology* **2020**, *21*, 923-934, 10.1016/ s1470-2045(20)30168-6.
- 82. Bryan D. Smith; Michael D. Kaufman; Wei-Ping Lu; Anu Gupta; Cynthia B. Leary; Scott C. Wise; Thomas J. Rutkoski; Yu Mi Ahn; Gada Al-Ani; Stacie L. Bulfer; et al.Timothy M. CaldwellLawrence ChunCarol L. EnsingerMolly M. HoodArin McKinleyWilliam C. PattRodrigo Ruiz-SotoYing SuHanumaiah TelikepalliAjia TownBenjamin A. TurnerLakshminarayana VogetiSubha VogetiKaren YatesFilip JankuAlbiruni Ryan Abdul RazakOliver RosenMichael HeinrichDaniel L. Flynn Ripretinib (DCC-2618) Is a Switch Control Kinase Inhibitor of a Broad Spectrum of Oncogenic and Drug-Resistant KIT and PDGFRA Variants. *Cancer Cell* 2019, *35*, 738-751.e9, 10.1016/j.ccell.201 9.04.006.
- Maria E Cabanillas; Mabel Ryder; Camilo Jimenez; Targeted Therapy for Advanced Thyroid Cancer: Kinase Inhibitors and Beyond. *Endocrine Reviews* 2019, 40, 1573-1604, 10.1210/er.2019 -00007.
- 84. Lori J. Wirth; Eric Sherman; Bruce Robinson; Benjamin Solomon; Hyunseok Kang; Jochen Lorch; Francis Worden; Marcia Brose; Jyoti Patel; Sophie Leboulleux; et al.Yann GodbertFabrice BarlesiJohn C. MorrisTaofeek K. OwonikokoDaniel S.W. TanOliver GautschiJared WeissChristelle de la FouchardièreMark E. BurkardJanessa LaskinMatthew H. TaylorMatthias KroissJacques MedioniJonathan W. GoldmanTodd M. BauerBenjamin LevyViola W. ZhuNehal LakhaniVictor MorenoKevin EbataMichele NguyenDana HeirichEdward Y. ZhuXin HuangLuxi YangJennifer KheraniS. Michael RothenbergAlexander DrilonVivek SubbiahManisha H. ShahMaria E. Cabanillas Efficacy of Selpercatinib in *RET*-Altered Thyroid Cancers. *New England Journal of Medicine* 2020, 383, 825-835, 10.1056/nejmoa2005651.
- 85. Vivek Subbiah; Robert J. Kreitman; Zev A. Wainberg; Jae Yong Cho; Jan H.M. Schellens; Jean Charles Soria; Patrick Y. Wen; Christoph Zielinski; Maria E. Cabanillas; Gladys Urbanowitz; et al.Bijoyesh MookerjeeDazhe WangFatima RangwalaBhumsuk Keam Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic *BRAF* V600–Mutant Anaplastic Thyroid Cancer. *Journal of Clinical Oncology* **2018**, *36*, 7-13, 10.1200/jco.2017.73.6785.

- 86. Theodore W. Laetsch; Douglas S. Hawkins; Larotrectinib for the treatment of TRK fusion solid tumors. *Expert Review of Anticancer Therapy* **2018**, *19*, 1-10, 10.1080/14737140.2019.1538796.
- 87. Stephanie Berger; Uwe M. Martens; Sylvia Bochum; Larotrectinib (LOXO-101). *Computational Biology* **2018**, *211*, 141-151, 10.1007/978-3-319-91442-8_10.
- 88. Alexander Drilon; Salvatore Siena; Sai-Hong Ignatius Ou; Manish Patel; Myung Ju Ahn; Jeeyun Lee; Todd M. Bauer; Anna F. Farago; Jennifer J. Wheler; Stephen V. Liu; et al.Robert DoebeleLaura GiannettaGiulio CereaGiovanna MarrapeseMichele SchirruAlessio AmatuKatia BencardinoLaura PalmeriAndrea Sartore-BianchiAngelo VanzulliSara CrestaSilvia DamianMatteo DucaElena ArdiniGang LiJason ChristiansenKarey KowalskiAnn D. JohnsonRupal PatelDavid LuoEdna Chow-ManevalZachary HornbyPratik S. MultaniAlice T. ShawFilippo G. De Braud Safety and Antitumor Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib: Combined Results from Two Phase I Trials (ALKA-372-001 and STARTRK-1). *Cancer Discovery* 2017, *7*, 400-409, 10.1158/2159-8290.cd-16-1237.
- 89. Maria E. Cabanillas; Mouhammed Amir Habra; Lenvatinib: Role in thyroid cancer and other solid tumors. *Cancer Treatment Reviews* **2015**, *42*, 47-55, 10.1016/j.ctrv.2015.11.003.
- Vincent Chau; Marijo Bilusic; Pembrolizumab in Combination with Axitinib as First-Line Treatment for Patients with Renal Cell Carcinoma (RCC): Evidence to Date. *Cancer Management and Research* 2020, ume 12, 7321-7330, 10.2147/cmar.s216605.
- 91. Toni K Choueiri; James Larkin; Mototsugu Oya; Fiona Thistlethwaite; Marcella Martignoni; Paul Nathan; Thomas Powles; David McDermott; Paul B Robbins; David D Chism; et al.Daniel ChoMichael B AtkinsMichael S GordonSumati GuptaHirotsugu UemuraYoshihiko TomitaAnna CompagnoniCamilla FowstAlessandra di PietroBrian I Rini Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial. *The Lancet Oncology* 2018, *19*, 451-460, 10.1016/s1470-2045(18)30107-4.
- 92. Guru Sonpavde; Thomas Hutson; Brian I Rini; Axitinib for renal cell carcinoma. *Expert Opinion on Investigational Drugs* **2008**, *17*, 741-748, 10.1517/13543784.17.5.741.
- 93. Sohita Dhillon; Ripretinib: First Approval. *Drugs* **2020**, *80*, 1133-1138, 10.1007/s40265-020-01348 -2.
- 94. Qinlock: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 95. Anthony Markham; Selpercatinib: First Approval. *Drugs* **2020**, *80*, 1119-1124, 10.1007/s40265-02 0-01343-7.
- 96. Retsevmo: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 97. Anthony Markham; Susan J. Keam; Selumetinib: First Approval. *Drugs* **2020**, *80*, 931-937, 10.100 7/s40265-020-01331-x.

- 98. Koselugo: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 99. Sohita Dhillon; Avapritinib: First Approval. *Drugs* **2020**, *80*, 433-439, 10.1007/s40265-020-01275-2.
- 100. Ayvakyt: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 101. Zaina T. Al-Salama; Susan J. Keam; Entrectinib: First Global Approval. *Drugs* **2019**, *79*, 1477-1483, 10.1007/s40265-019-01177-y.
- 102. Rozlytrek: EPAR Overview. . European Medicines Agency. Retrieved 2022-4-21
- 103. Yvette N. Lamb; Pexidartinib: First Approval. *Drugs* **2019**, *79*, 1805-1812, 10.1007/s40265-019-01 210-0.
- 104. Refusal of the marketing authorisation for Turalio (pexidartinib). . European Medicines Agency. Retrieved 2022-4-21
- 105. Lesley J. Scott; Larotrectinib: First Global Approval. *Drugs* **2019**, *79*, 201-206, 10.1007/s40265-01 8-1044-x.
- 106. Vitrakvi: EPAR Product Information. . European Medicines Agency. Retrieved 2022-4-21
- 107. Yahiya Y. Syed; Lorlatinib: First Global Approval. *Drugs* **2019**, *79*, 93-98, 10.1007/s40265-018-104 1-0.
- 108. Lorviqua: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 109. Matt Shirley; Dacomitinib: First Global Approval. *Drugs* **2018**, *78*, 1947-1953, 10.1007/s40265-01 8-1028-x.
- 110. Vizimpro: EPAR Product Information. . European Medicines Agency. Retrieved 2022-4-21
- 111. Matt Shirley; Encorafenib and Binimetinib: First Global Approvals. *Drugs* **2018**, *78*, 1277-1284, 10. 1007/s40265-018-0963-x.
- 112. Braftovi: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 113. Mektovi: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 114. Anthony Markham; Brigatinib: First Global Approval. *Drugs* **2017**, 77, 1131-1135, 10.1007/s40265 -017-0776-3.
- 115. Alunbrig: EPAR Product Information. . European Medicines Agency. Retrieved 2022-4-21
- 116. Julia Paik; Sohita Dhillon; Alectinib: A Review in Advanced, ALK-Positive NSCLC. *Drugs* **2018**, *78*, 1247-1257, 10.1007/s40265-018-0952-0.
- 117. Alecensa: EPAR Summary for the public. . European Medicines Agency. Retrieved 2022-4-21

- 118. Karly P. Garnock-Jones; Cobimetinib: First Global Approval. *Drugs* **2015**, *75*, 1823-1830, 10.1007/ s40265-015-0477-8.
- 119. Cotellic: EPAR Summary for the public. . European Medicines Agency. Retrieved 2022-4-21
- 120. Lesley J. Scott; Lenvatinib: First Global Approval. *Drugs* **2015**, *75*, 553-560, 10.1007/s40265-015-0383-0.
- 121. Lenvima: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 122. Rosselle T. Dungo; Gillian M. Keating; Afatinib: First Global Approval. *Drugs* **2013**, 73, 1503-1515, 10.1007/s40265-013-0111-6.
- 123. Giotrif: EPAR Summary for the public. . European Medicines Agency. Retrieved 2022-4-21
- 124. Cameron J. M. Wright; Paul L. McCormack; Trametinib: First Global Approval. *Drugs* **2013**, *73*, 1245-1254, 10.1007/s40265-013-0096-1.
- 125. Mekinist: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 126. Anita D. Ballantyne; Karly P. Garnock-Jones; Dabrafenib: First Global Approval. *Drugs* **2013**, 73, 1367-1376, 10.1007/s40265-013-0095-2.
- 127. Tafinlar: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 128. Harpreet Singh; Michael Brave; Julia A. Beaver; Joyce Cheng; Shenghui Tang; Eias Zahalka; Todd R. Palmby; Rajesh Venugopal; Pengfei Song; Qi Liu; et al.Chao LiuJingyu YuXiao Hong ChenXing WangYaning WangPaul G. KluetzSelena R. DanielsElektra J. PapadopoulosRajeshwari SridharaAmy E. McKeeAmna IbrahimGeoffrey KimRichard Pazdur U.S. Food and Drug Administration Approval: Cabozantinib for the Treatment of Advanced Renal Cell Carcinoma. *Clinical Cancer Research* **2016**, *23*, 330-335, 10.1158/1078-0432.ccr-16-1073.
- 129. CABOMETYX (cabozantinib). Prescribing Information. . U.S Food & Drug Administration. Retrieved 2022-4-21
- 130. Cabometyx: EPAR Medicine Overview. . European Medicines Agency. Retrieved 2022-4-21
- 131. Subhajit Roy; Bawneet K Narang; Shiva K Rastogi; Ravindra K Rawal; A Novel Multiple Tyrosinekinase Targeted Agent to Explore the Future Perspectives of Anti-Angiogenic Therapy for the Treatment of Multiple Solid Tumors: Cabozantinib. *Anti-Cancer Agents in Medicinal Chemistry* 2014, 15, 37-47, 10.2174/1871520614666140902153840.
- 132. COMETRIQ (cabozantinib). Prescribing Information. . U.S Food & Drug Administration. Retrieved 2022-4-21
- 133. Cometriq: EPAR Summary for the public. . European Medicines Agency. Retrieved 2022-4-21
- 134. Thomas J. Ettrich; Thomas Seufferlein; Regorafenib. *Methods in Pharmacology and Toxicology* **2014**, *201*, 185-196, 10.1007/978-3-642-54490-3_10.

- 135. STIVARGA (regorafenib). Prescribing Information. . U.S Food & Drug Administration. Retrieved 2022-4-21
- 136. Stivarga: EPAR Summary for the public. . European Medicines Agency. Retrieved 2022-4-21
- 137. Audrey Bellesoeur; Edith Carton; Jerome Alexandre; Francois Goldwasser; Olivier Huillard; Axitinib in the treatment of renal cell carcinoma: design, development, and place in therapy. *Drug Design, Development and Therapy* **2017**, *ume 11*, 2801-2811, 10.2147/dddt.s109640.
- 138. INLYTA (axitinib). Prescribing Information. . U.S Food & Drug Administration. Retrieved 2022-4-21
- 139. Inlyta: EPAR Summary for the public. . European Medicines Agency. Retrieved 2022-4-21
- 140. Alice T. Shaw; Uma Yasothan; Peter Kirkpatrick; Crizotinib. *Nature Reviews Drug Discovery* **2011**, *10*, 897-898, 10.1038/nrd3600.
- 141. XALKORI (crizotinib). Prescribing Information. . U.S Food & Drug Administration. Retrieved 2022-4-21
- 142. Xalkori: EPAR Summary for the public. . European Medicines Agency. Retrieved 2022-4-21
- 143. Keith. T Flaherty; Uma Yasothan; Peter Kirkpatrick; Vemurafenib. *Nature Reviews Drug Discovery* **2011**, *10*, 811-812, 10.1038/nrd3579.
- 144. ZELBORAF (vemurafenib). Prescribing Information. . U.S Food & Drug Administration. Retrieved 2022-4-21
- 145. Zelboraf: EPAR Summary for the public. . European Medicines Agency. Retrieved 2022-4-21
- 146. James E. Frampton; Vandetanib. *Drugs* **2012**, *72*, 1423-1436, 10.2165/11209300-00000000-000 00.
- 147. Caprelsa: EPAR Summary for the public. . European Medicines Agency. Retrieved 2022-4-21 Retrieved from https://encyclopedia.pub/entry/history/show/53265