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The energy and environmental crises have been an ongoing challenge, which is related to the vital interests of

people around the globe. How to solve this problem through sustainable development strategies is considered

deeply by scientific researchers. Photocatalysis provides a powerful technique for fully utilizing solar in the field of

energy conversion.

g-C3N4  preparation  modification  hydrogen evolution  CO2 conversion

1. H  Production

Hydrogen is gathering strong momentum as a pivotal energy transition pillar driven by the global shift toward

decarbonization. Nevertheless, 85% of H  is produced from fossil fuel combustion, which generates roughly 500

metric tons of carbon dioxide every year and proffers a challenge and obstacle toward the sustainable living of

future generations . Solar-driven photocatalytic H  generation as a promising technology has received extensive

attention in addressing the global energy crisis . Photocatalytic water splitting for the energy transformation

from solar to eco-friendly fuels has been studied for decades with various semiconductor photocatalysts. As a type

of semiconductor photocatalyst, g-C N  is simple and inexpensive to fabricate, and has an adequate bandgap

(≈2.7 eV) for activation upon sunlight irradiation. Wang’s group first utilized g-C N  in photocatalytic H  evolution 

. Nonetheless, pristine g-C N  is far from satisfactory energy conversion because of its low light energy

utilization, low density active sites, and ineffective isolation of the photogenerated excitons. Thus, researchers have

proposed numerous strategies to boost the photocatalytic activity of g-C N -based materials for H  production. For

example, the g-C N /carbon-dot-based nanocomposites, which possess enormous visible light absorption and

applicable energy structures, have been prepared and serve as efficacious photocatalysts in photocatalytic water

splitting for H  generation under light illumination . Gao et al. reported hexagonal tubular g-C N /CD-based

nanocomposites which exhibited nine times higher than bulk g-C N  in H  production rate  and related results

indicated that CDs performed as both photosensitizer and electron acceptor. CDs could absorb long wavelength

light to extend the visible-light response region and suppress the recombination of electron-hole pairs. Hussien et

al.  combined four different strategies (non-metal doping, porosity generation, functionalization with amino

groups, and thermal oxidation etching) in a one-pot thermal reaction and successfully prepared amino-

functionalized ultrathin nanoporous B-doped g-C N  by using NH Cl as a gas bubble template, together with a

thermal exfoliation process to produce ultrathin sheets. According to the process, the surface area, adsorption
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capacity, and charge migration of the as-prepared photocatalyst have been improved, and a 3800 µmol g  h  H

generation rate and 10.6% prominent quantum yield were recorded. Li et al.  decorated carbon self-doping g-

C N  nanosheets with gold-platinum (AuPt) nanocrystals through a photo-deposition route and compared the

photocatalytic H  evolution performance of Pt/CCN, Au/CCN, Au/Pt/CCN, and Pt/Au/CCN, in which AuPt/CCN

stood out and gave the highest H  generation rate (1135 μmol h ). The excellent performance can be ascribed to

the non-plasmon-related synergistic effect of Au and Pt atoms in AuPt nanocrystals. Sun et al.  assessed the

arrangements of metal- and non-metal-modified g-C N  composites in hydrogen evolution and found that the

contribution of dye conjugation in non-metallic g-C N  composites favored their performance. However, the co-

catalyst doping strategy was recommended for metallic g-C N  composites. In addition, the hybrid of MOF

materials and g-C N  is also a good approach to develop novel photocatalysts. For example, Devarayapalli et al.

 reported a g-C N /ZIF-67 nanocomposite and obtained a 2084 μmol g  H  production, which is 3.84-fold

greater than that of bare g-C N .

2. CO  Photoreduction over g-C N

Rising atmospheric levels of CO  and the consumption of fossil fuels raise a concern about the continued reliance

on the utilization of fossil fuels for both energy and chemical production . Photocatalytic reduction of CO  is a

promising strategy to meet increasing energy needs and reduce the greenhouse effect . Through photocatalytic

reduction, CO  can be converted to light oxygenates and hydrocarbons. Photocatalytic CO  reduction is a

multielectron transfer process. Fu et al.  have listed the possible reaction and corresponding redox potentials

and stated that CO  was complicated to reduce at room temperature due to its stable chemical structure. For the

complex reaction, five factors, comprising the matching of band energy, separation of charge carrier, kinetic of e-

and hole transfer to CO  and reductant, the basicity of photocatalyst, and the strength and coverage of CO

adsorption, are considered to be crucial . As a hot member of photocatalysts, g-C N  has been applied to CO

photo-reduction in recent years because the CB of g-C N  is sufficient to reduce CO  to various hydrocarbons,

such as CH OH, CH , HCHO, and HCOOH and so on. .

However, metal-free g-C N  is limited for CO  reduction activity due to its poor ability to activate the C-O bond of

CO . To improve the photocatalytic movement of CO  conversion, different metal units have been composited with

g-C N  for broadening the absorption response range, and accelerating the charge separation and transfer, such

as Pt/g-C N  , Co /g-C N  , Au/g-C N   and so on. Metal nanoparticles acting as cocatalysts could

effectively improve the photocatalytic activity and selectivity of CO  reduction. In addition, other methods, including

doping, loading cocatalysts and nanocarbons, constructing Z-scheme, and heterojunction, have also been

employed . For example, Fu et al.  prepared hierarchical porous O-doped g-C N

nanotubes (OCN-Tube) through continuing thermal oxidation exfoliation and curling condensation of bulk g-C N .

Due to the higher specific surface area, better light harvesting, higher CO  uptake capacity, and superior

separation efficiency of photogenerated charge carriers, the OCN-Tube exhibits excellent photocatalytic CO

reduction performance into CH OH. The CH OH evolution rate was as high as 0.88 µmol g  h , five times higher

than the bulk (0.17 µmol g  h ). Huo et al.  fabricated amine-modified step-scheme (S-scheme) porous g-
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C N /CdSe-diethylenetriamine (A-PCN/CdSe-DETA) by a one-step microwave hydrothermal method. The

modification by amine and formation of S-scheme heterojunction contributed to the remarkable photocatalytic

performance of A-PCN/CdSe-DETA composite in CO  reduction and a CO production rate of 25.87 μmol/(h g) was

achieved under visible-light irradiation. Wang et al.  reviewed different modification methods of g-C N -based

photocatalysts for CO  reduction. They discussed each method (including morphology adjustment, co-catalysts,

heterostructures, and doping) and compared the theoretical calculations and experimental results. By morphology

adjustment, g-C N  with various shapes can be fabricated, such as rods, tubes, nanosheets, hollow spheres, and

honeycomb-like structures. Due to the advantage of cocatalysts (e.g., Au, Ag, Pt, Pd, MXene, AuCu alloy, Pd-Ag),

g-C N  with co-catalysts can be widely applied to activate CO  on the surface. Heterojunction with different types is

also an effective method to improve the properties of g-C N -based materials. In addition, elemental doping is

considered a common method to enhance photocatalytic quantum efficiency by changing the energy band, surface

electronic property, and electrical conductivity.

3. Degradation of Organic Pollutants

Along with rapid population growth and significant industrialization development, large numbers of toxic,

hazardous, and endless contaminants invade the environment, threatening to human life, especially a variety of

pollutants present in water that are difficult to eliminate or degrade naturally. Photocatalytic degradation of

contaminants is a green and efficient technology for coping with sewage . Different kinds of g-C N -based

materials (Table 1) have been exploited to increase the photodecomposition efficiency of pollutants, such as the

constructed heterojunction, loading O -reduction co-catalysts, g-C N /CDs-based nanocomposites, and so on 

. Generally, under the irradiation of visible light, the photogenerated electrons (e ) on the g-C N  catalyst

will be excited from VB to CB, leaving holes (h ) in the VB. The holes can oxidize pollutants directly or react with

H O/OH  to form hydroxyl radicals . When the REDOX potential of g-C N  composites is more negative than

O /O , the photogenerated electrons in the material can react with O  to produce O  with strong oxidation

capacity . In addition, the resulting O  could be protonated to produce OH . Finally, the RhB dye is degraded

to CO  and H O under the action of these free radicals. Chen et al.  fabricated a BiFeO /g-C N  heterostructure

through mixing-calcining and compared its performance with BiFeO . Around 30% higher photocatalytic efficiency

toward RhB dye was observed for the BiFeO /10% g-C N  heterostructure, which was assigned to the contribution

of a higher concentration of O . Zhang et al.  studied the selective reduction of molecular oxygen on g-C N

and probed its effect on the photocatalytic phenol degradation process. Compared with bulk g-C N , the exfoliated

nanosheet yielded a three times improvement in photocatalytic phenol degradation. It has been demonstrated that

bulk g-C N  prefers to reduce O  to O via one-electron reduction. At the same time, the photoexcited g-C N

nanosheet facilitates the two-electron reduction of O  to yield H O  because of the formation of 1,4-endoperoxide

species. The two-electron reduction of O  on the nanosheet surface boosts hole generation and thus accelerates

phenol oxidation degradation . Thus, to improve the photocatalytic performance of g-C N , more effort should

be devoted to strengthening the solid O -reduction reactions. For example, Liu et al.  reported a heterojunction

material of K-doped g-C N4 nanosheet -CdS and degraded tetracycline with 94% degradation under visible light in

30 min. In addition, due to the electronegativities, ionic radius differences, and impurity states, element doping is
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also an effective method to manipulate the electronic structure and physicochemical performance of g-C N -based

materials. Gao et al.  synthesized Fe-doped g-C N  nanosheets and obtained 1.4- and 1.7-fold higher

degradation rates of MB than that of pure g-C N  nanosheets and bulk g-C N , which indicated that the

exploitation of efficient g-C N -based photocatalysts with high stabilization and degradation under visible light

irradiation would significantly contribute to sewage disposal. Zhang et al.  synthesized a novel hybrid of Zr-

based metal-organic framework with g-C N  (UiO-66/g-C N ) nanosheets and applied a photodegradation of

methylene blue, by which a 100% photodegradation was achieved within 4 h under visible light. Here, it has been

provided with a new insight into the design of g-C N -based photocatalysts to deal with organic dyes in the

environment.

Table 1. Photocatalytic degradation of pollutants over g-C N -based materials reported within the last three years.
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Entry Photocatalyst Pollutant
Concentration Light Source Degradation

Efficiency/% Ref.

1 5% g-C N -TiO
Acetaminophen:

0.033 mM
300 W Xe (>400

nm)
99.3 in 30 min

2 3ZIF/1.5Au-PCN Bisphenol A
350 W Xe (>420

nm)
>85%

3 Cu(tmpa)/20%CN
Congo red: 100

mg·L 150 W Xe 98.2% in 3 min

4
BiO-Ag(0)/C N @

ZIF-67
Congo red: 12

mg·L Natural sunlight 90% in 150 min

5 C N /RGO/Bi Fe O
Congo red: 10

mg·L LED 30 W
87.65% in 60

min

6 g-C N /Co-MOF Crystal violet: 4 ppm
MaX 303 solar
simulator (50

mW/cm)
95% in 80 min

7
Honeycomb-like
g-C N /CeO -x

Cr (VI): 20 mg·L
300 W Xe (>420

nm)
98%

in 150 min

8 Sm WO /g-C N
Levofloxacin: 10

mg·L
150 Mw cm
tungsten lamp

98% in 70 min

9 O-g/C N
Lincomycin: 100

mg·L
PCX50C system

(>420 nm)
99% within 3 h

10 ZnO-modified g-C N
Methylene blue: 10

ppm
200 W tungsten
lamp (>420 nm)

97% in 80 min

11 Wood-like g-C N @WDC
Methylene blue: 20

mg·L
300 W Xe (>400

nm)
98% in 60 min
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Entry Photocatalyst Pollutant
Concentration Light Source Degradation

Efficiency/% Ref.

12
BiO-Ag(0)/C N @

ZIF-67
Methylene blue: 12

mg·L
Natural sunlight

96.5% in 120
min

13
Cerium-based GO/g-

C N /Fe O
Methylene blue: 10

mg·L
Light bulb

70.61% in 45
min

14
Ytterbium oxide-based GO/g-

C N /Fe O
Methylene blue: 10

mg·L
Light bulb 83.5% in 45 min

15 Cu(tmpa)/20%CN
Methylene blue: 10

mg·L
150W Xe

92.0% within 20
min

16 C N /AgO @Co Bi O
Methylene blue: 25

mL 10 mM
100 W tungsten

bulb
96.4% in 120

min

17
Ternary composites of Zr-MOF

combined with g-C3N4 and
Ag PO

Methylene blue: 10
mg·L

85-watt tungsten
lamp

outdoor/solar light
in

an open air

95% within 240
93% within 105

min

18 PSCN/Ag@AgI/WO
Malachite green: 1 ×

10  mol dm
35 W LED 90% in 60 min

19 Cu(tmpa)/20%CN
Malachite green: 30

mg·L
150W Xe 92.9% in 35 min

20 20% g-C N /Bi O I
Methyl orange: 20

mg·L
350 W Xe 0.164 min

21 Cu(tmpa)/20%CN
Methyl violet: 10

mg·L
150W Xe 92.0% in 60 min

22 MnCo O /g-C N
Nitrobenzene: 40 mg

L
CMCN2/PMS

system
96.7% in 240

min

23 C N /AgO @Co Bi O
Oxytetracycline: 25

mL 25 mM
100 W tungsten

bulb
93% in 160 min

24 g-C N /WO /WS
Rhodamine B: 25 mg

L
300 W Xe (>420

nm)
96.2% in 20 min

25 Flower-like Bi TiO /g-C N
Rhodamine B: 20

mg·L
150 mW·cm  Xe

(>420 nm)
100% in 30 min

26 CdS/CQDs/g-C N
Rhodamine B: 10

mg·L
300 W Xe
(>420 nm)

100% in 20 min
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