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A digital twin is a virtual representation that replicates a physical object or process over a period of time. These tools

directly assist in reducing the manufacturing and supply chain lead time to produce a lean, flexible, and smart production

and supply chain setting. Digital twin technology creates relatively close connectivity between both the virtual and physical

worlds, allowing you to monitor and command systems and components remotely. Moreover, it is now possible to run

simulation models to test and forecast resource and process-related changes in various “what-if” scenarios. Hence,

organizations are now getting significant benefits from digital twin technology that assists in mapping and analyzing details

related to operations performance, product and service innovation, and shorter on time delivery.
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1. Relationship between Logistics 4.0, Supply Chain 4.0 and Industry 4.0

IR 4.0 has led to the digitization in supply chain and logistics has made way for the evolution of logistics 4.0. Various tools

and technological settings from the IR 4.0 have been adopted in the supply chain and logistics setting or environment to

leverage the benefits. Digital twin technology offers risk free scenario analysis by developing a predictive and prescriptive

decision-making platform for the industry players and it is one of the core technological tools in IR 4.0 .

Basically, logistics is the sub-component of supply chain and supply chain is the sub-component of production

management. A digitally equipped supply chain platform is the backbone for Industry 4.0 to function. I.R 4.0 tools equip

the supply chain and logistics processes such as inbound logistics, warehouse management, intralogistics, outbound

logistics and logistics routing, etc. I.R 4.0 based protocols and tools such as Smart data management, Internet of things,

cloud computing and Blockchain accelerated the supply chain and logistics processes to greater extent. These create an

automated, intelligent and increasingly autonomous flow of assets, goods, materials and information between the point of

origin and the point of consumption, and the various points in-between are key. Supply chain logistics processes become

more efficient, effective, connected, and agile/flexible in order to meet the needs of market .

Logistics 4.0 sounds similar to the concept of I.R 4.0. Instead of referring to the digitalization of industrial sector and

processes it refers to the digitization of the physical elements and mobility. Moreover I.R tools have improved the visibility,

imparted smart utilities, and adopted IoT in logistics. A state-of-the art logistics 4.0 scenario refers to the condition in which

it becomes capable of collaborating and integrating with Industry 4.0 procedures and systems. Logistics 4.0 seems like a

lucrative value-added proposition for all the businesses that wish to drift away from the complexities of a global supply

chain creating supply chain transparency, automation, and real-time tracking .

2. Digitalization of Supply Chain and Logistics

Previous conventional supply chain and logistics processes in the industrial scenario had huge paperwork and manual

interference. Recent inclusions such as data warehouse and SAP systems have revolutionized the way in which shop

floors, warehouses and logistics entities work . The static nature of visualizing a supply chain network needed a

dynamic way to view it for better decision making, especially the current and future processes related to supply chain and

logistics. It is now slowly possible only through effective digital transformation of the supply chain and logistics. Digital

transformation is a key driver for Industry 4.0 that creates digitalized, interconnected, smart supply chain, and logistics 

. In global supply chains, it is obvious that countries and logistics providers need to achieve a competitive advantage in

terms of digitalization. However, still more studies should focus on measuring the potential for innovation to improve

logistics efficiency . In this context, particularly the term ‘Logistics 4.0’ receives growing attention, in recent years, which

in a way accentuates that logistics as a central function plays an important role within the digital transformation of the

manufacturing sector and thus, the underlying Industry 4.0 vision . They are built with data-powered digital systems

such as the internet of things, big data, and blockchain platforms with hyperledger . However, the environmental issues

in the supply chain should also be taken into account .
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One such example is the digital learning factory that has been built by the Research Center of Vorarlberg University of

Applied Sciences for educating students and employees of industrial partners by devising learning scenarios and courses

addressing a wide variety of topics related to Industry 4.0 and showcasing the best practicing platform for digitalization. In

addition, novel methods and technologies for digital production adopt cloud-based manufacturing, data analytics, and

digital twins.

3. Real-Time Data-Driven Simulation Modelling

Use of historical data is becoming outdated and practitioners are looking for real-time data. Therefore, the demographic

data acquisition from different supply chain players or stakeholders can also be utilized to obtain information such as the

location of truck routes, distribution centers, retail stores, and individual consumers to understand the logistic systems .

These data can be directly fed into the Enterprise Resource Planning (ERP) database and production system database to

generate a usable XML visual basic file that can be fed into the simulation software to create a digital twin.

To bolsters this, Goodall et al. (2019),  constructed a data-driven simulation model to predict material flow behavior in

remanufacturing processes by using data from digital production systems (e.g., databases, traceability systems, process

plans) to update and automatically modify simulation constructs to reflect the real world or planned system. The

information was gathered through a Radio Frequency Identification (RFID) traceability software platform at the factory.

Tannock et al. (2007),  applied the same concept in the supply chain of a civil aerospace sector. Qiao and Riddick

(2004),  used a neutral information representation tool based on the extensible markup language (XML), to acquire

information integration and exchange along supply chain applications. Similarly, mass customization in manufacturing and

supply chain needs data integrated simulation systems. Qiao et al. (2003),  built a neutral model of shop information,

based on the XML, to exchange data between simulations and perform analysis according to the demand fluctuations in

the shop floor.

The product, product family, and related logistic resources like a truck, carriers, distribution centers, production facilities,

warehouses can be presumed to be agents that can help create an agent-based model and replicate the behavioral

pattern of the supply chain model. Another tool that can be integrated within a Discrete Event or Agent Based simulation

models is the geographical information systems that allow use of the geographical maps with exact coordinates. This is

further applied to allot location and routes for distribution centers, suppliers, trucks, etc. Product routing, supply chain

optimization, Greenfield analysis can also be done using Geographic Information Systems (GIS) acquired from the

logistics route database .

Discrete Event Simulations is used to adapt and mimic warehouse operations from the producer’s perspective (Finished

Product Des-patch & Product Recall), and a system dynamics model can be integrated to display managerial decision

making, consumer behavior, and cost associated with these operations . As a result, an integrated or hybrid modeling

technique is utilized to virtually represent the dynamic nature of logistics models in terms of functionality as well as the

cost incurred. Hybrid simulation modeling can precisely capture complex behavior and changes in model design. Typically,

simulation is a representation of a system that is either going to happen in the future or is already present. As a result, a

data-driven decision-support system combined with IoT connectivity will aid in feeding real-time data into a virtual real-

time prototype . A centralized SCADA (Supervisory Control and Data Acquisition) system acts as the core data hub .

As a result, these tools have enabled simulation modeling to obtain data from real-time data warehouses, resulting in a

logistics 4.0 environment. As a result, data-driven simulation modeling generates scenario-based patterns that are

employed by machine learning algorithms to instruct the models to react to previously established patterns and

ascertained solutions.

4. Applications of Reinforced Learning in Supply Chain and Logistics

According to Meng at al. (2013),  there are several methods to set up a data-driven feed to simulation setting. One

among them is generating XML visual basic code that can feed in the data required for the software given that the

software is capable of receiving it. The inclusion of machine learning to build predictive analysis to enable automated

logistics route optimization and decision making are enabled with a series of datasets that are utilized to build a

descriptive, predictive, and prescriptive analytics platform with the help of regression/correlation-based supervised

machine learning (deep learning) algorithms. This action is further validated to and predict behavioral patterns .

Logistics 4.0 and its self-perception can transform and strengthen conventional logistics. Logistics has been a central

pillar of the supply chain for the industry. Extremely competitive and volatile logistics markets and large logistic networks

need new approaches, products, and services. Today’s customer behavior is leading to new strategic problems and
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opportunities. For that, the idea of the cyber-physical system (CPS), wireless networks, the Internet of Things and

Services (IOT&S), Big Data/Data Mining (DM), and cloud computing, etc., seems to be the possible technological answer.

Its consequent application ultimately leads to the need to revisit some core principles of conventional logistics . To

connect end-to-end logistics networks and meet complex manufacturing goals, it is very essential to tap the benefits of

elements such as IoT (Internet of Things), digital twin simulation models, advanced robots, big data analytics, and

virtual/augmented reality .

A logistic system needs to be optimized from both inbound and outbound that is possible by intelligent systems,

embedded in software and databases from which relevant information is provided and shared through the Internet of

Things (IoT) systems, to achieve a major automation degree by creating a network where all processes can communicate

with each other, and enhance analytical potentialities throughout the supply chain. This promotes a significant decision-

making standard and reaches top quality and becomes more and more flexible and efficient in the near future . Song et

al. (2020),  applied simulation integrated reinforced learning to study the percentage increase of ride-sharing in taxi

service. They used taxi data from Seoul (South Korea) to determine optimal surge rates for ridesharing services over a

specific period. The reinforced learning strategy based on centrality that governs the probability of the drivers’ destination

decision was used. Furthermore, passenger waiting time mediated the reward function.

Shen and Dai (2017),  applied the same principle in the container ship controller systems with neural network

technique. Abdelghany et al. (2021),  introduced an innovative methodology for developing itinerary choice models

(ICM) for air passengers. A reinforcement learning algorithm looks for the values of the itinerary choice model’s

parameters while maximizing a reward function. The negative difference between the estimated and observed system

metrics is used to calculate the reward function.

Furthermore, Cavalcante et al. (2019),  proposed a new approach to analyze the risk profiles of supplier performance

under uncertainty by combining simulation and machine learning integrated digital supply chain twins. These twins

improved resilience by learning and designing risk mitigation strategies in supply chain disruption models, re-designing

the supplier base, or judging the most important and risky suppliers. Similarly, more studies should be focused on the

development of a state-of-the-art IoT-assisted embedded data-driven gateway that feeds online data to run the prebuild

hybrid simulation models or digital twins. All the required parameters/variables to simulate the logistic model’s dynamic

complexity in real-time will be set up in the model to connect to their respective data and create simulation runs. By

knowing the rubrics and dynamics of the logistic model, an optimized real-time value-focused application platform can be

suggested for future research. Disruptions and related solutions (rewards) are applied to the models that are further

integrated with a reinforced learning algorithm that captures the patterns of disruptions and give solutions to the same

disruptions. Human intervention is avoided and artificial intelligence takes over.

This research approach can widen up the scope and give insights in building sophisticated AI-based decision support

systems for future logistics 4.0. Various real-time industrial problems in the area of (1) Multi-mode transportation network

optimization , (2) Truck route network scenario planning and optimization , (3) Smart Warehouse Bin Pick and Drop

, Forklift Route Planning and Throughput, Automated Rack Storage and Retrieval , and (4) Multiple Criteria based

Smart Conveyor Design , etc.

Strategic and resilient simulation models or digital twins appear to be an efficient and cost-effective tool for visualizing

problems, proposing solutions, and practicing risk-free testing. They can virtually forecast optimal network design,

inventory management methods, supply and distribution systems, logistics (micro and macro), and other associated

systems . Even though demand-specific uncertainties like work in process time, lead time, supply chain queues,

delays, etc., can easily be projected using a digital twin , there is a need for perfect real-time data monitoring systems

. The manual data feed of historical data following the know-how trend has become old. A stochastic mode of what-if

analysis with real-time online data is currently needed to analyze disruptions and measure the resilience of a system 

. To attain this, simulation modelling are integrated with IoT to provide dynamic and virtual supply chains along with

traceability and tracking options . IoT-based modelling allows supply chains to use virtualizations to actively assist

manufacturers in grappling with perishable products, volatile supply fluctuations, safety, and sustainability specifications.

Virtualization allows supply chain members to track, manage, schedule, and automate logistics networks remotely and in

real-time over the Internet, focusing mainly on physical reality instead of post-data observation .

While the latest revolution on digital transformational provides new opportunities. Logistics models are now re-evaluated

by data-driven platforms. Extracting insights from operational data assists in predicting uncertainties and reduce

inefficiencies in logistics operations by making them more resilient and sustainable . But still, these are again just know-

how digital twins at that point in time. However, it is also important to measure their behavioral dynamics when subjected
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to disruptions. Reinforced machine learning has great potential here to absorb humungous patterns of data and create a

prescriptive analysis platform for logistics and build better decision support systems.

5. Applications of Digital Twin in Macro Logistics

Reliable plans to outline the trucks’ routes are feasible by flexible and strong data-driven decision-making processes both

at the operational level or real-time. IoT devices have the capability to enable this with ease. A simulation-based What-if

scenario is generated to simulate, predict, optimize, project, and measure resource performance . Global positioning

system (GPS) based IoT devices are capable of collecting a large amount of data that were not fully utilized to optimize

reaction times, a stochastic truck traveling speed previously. This data can act as a direct feed to the simulation model to

allow risk-free truck route optimization according to the process constraints . Simulation strategies like discrete event

simulation have been widely used to design flexible and optimal resources. Previously, Meng at al. (2013),  developed

a Unified Modelling Language-based formal information model to generate simulation models via pre-built Petri nets to

address equipment scheduling issues. In another case, a severe traffic problem related to efficiency in urban ports was

addressed by Heilig et al. (2017),  with the same method in which an algorithm was developed to build a cloud-based

decision platform to consider contextual data, including traffic data and the current positions of trucks allowing ports to

utilize potentials of digitalization and optimization issues.

6. Application of Digital Twin Technology in the Warehouse Operations
(Micro + Macro Scenario)

It can also be applied extensively in warehouse-based scenarios. The best example is the optimization of automated

modular conveyor systems in warehouses facing bottlenecks. The unpredictability and intricate dynamics of the process

can be captured by time-based simulation modelling. These models are exposed to various scenarios after verification

and validation. In addition, if this is made completely data-driven, a cost-effective approach is given to increase

performance. This is the future of a stable standalone system of decision support enabled by dynamic digital twin

recreations .

To mention a few, Sahay and Ierapetritou (2013),  formulated a hybrid simulation modelling approach by combining an

iterative model with an agent-based simulation model which can decide toward an optimal allocation of resources

subjected to multiple problems and constraints. Industry 4.0 has paved the way for a world where smart factories will

automate and upgrade many processes through the use of some of the latest emerging technologies. It can ease the

automatable and tedious tasks, like the ones performed on a regular basis for determining the inventory and for

preserving item traceability . Kim et al. (2020),  formulated optimal cut-off and pick-up time in the warehouse as

per the customer order responsiveness through priority-based job scheduling using flow-shop models that can assist

warehouse managers in decision making. The application of stochastic simulation models for uncertain real-life

operational environments contributes to the practical gap and novelty.

To conclude on this case, a real-time industrial warehouse problem can be addressed, or a prototype warehouse bin pick

up and storage system in the logistics 4.0 lab that is included with few modifications along with problem definitions and

solutions. The insights from the study conducted by Fragapane et al. (2019),  provided directions in terms of the

research objective and also use the process parameters that were used in the statistical model. These methods can

tackle many distribution warehouse issues without the restrictions of traditional tools. Hybrid Smart Simulation can

abstract distributed autonomous entities that can interact with each other and their environment through space and time,

allowing to capture a lot of resource relation attributes such as work time allocation of resources, automated guided

vehicle (AGV) work scheduling, congestion (buffer) wait time, process/cycle times, Forklift throughput, worker and

machine speeds, resource block behavior, Bin or Rack Storage, Designing Artificial Storage and Retrieval System, etc.

Moreover, a hybrid modelling approach can also be adopted to virtually visualize the dynamic nature of the system or

logistics model covering all the functionalities. Complex behavior and changes in model design shall be precisely captured

by hybrid simulation modelling. Usually, simulation is a display of a system that is either going to happen in the future or

that is already there. So, a data-driven decision support system + IoT integration gateway module will be installed here in

feeding real-time data to obtain a virtual real-time prototype. Later, these data patterns are utilized to build a predictive

analytics platform with the help of reinforced/supervised machine learning algorithm. A real case logistics system from the

industry shall be first recorded and tabulated for primary data taking either Case A or B systems into account.

For example, the product, product family, and logistic resources like a truck, carriers, AGVs, and Conveyors, etc., are

presumed to be agents to replicate the behavioral pattern of the system under study. IoT devices assist in obtaining real-
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time data by directly retrieving data from the resource blocks mentioned above to the embedded cloud server. If not, it can

also be retrieved from the Enterprise Resource Planning (ERP) database and production system database to generate a

usable XML visual basic or CSV file that are fed into the simulation software. However, the latter has technological

constraints if the host firm does not have this setup.

The geographic information system feature in the simulation modelling software shall assist in planning the optimal

positioning of the distribution centers, transport routing, milk runs, product routing, and supply chain optimization. After the

completion of an empirically verified digital twin, the parameters for disruptions and respective solutions shall be included

in the models to analyze different scenario patterns. These patterns are separately retrieved to build Reinforced Learning

Algorithms that help create a prescriptive analytic platform that acts as a stepping stone for logistics 4.0 decision support

systems.

There are several methods to set up a data-driven feed to simulation software. One among them is generating XML visual

basic code that can feed in the data required for the software given that the software is capable of receiving it .

Therefore, the series of datasets are utilized to build a descriptive, predictive, and prescriptive analytics platform with the

help of regression/correlation-based supervised machine learning (deep learning) algorithms.
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