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Early research on Human Action Recognition was dominated by the analysis of still images or videos, localizing the actor
in a video spatio-temporally using bounding boxes, temporal extent, and a spatio-temporal cuboid which contains a
particular action. Human Action Recognition has many applications, including the automated annotation of user videos,
indexing and retrieving user videos, automated surveillance, monitoring elderly patients using specially adapted cameras,
robot operations, and live blogging of actions. In recent times, the availability of massive amounts of video data has
provided significance to the understanding of video data (through a sequence of images) with the possibility of solving
problems such as scene identification, searching through video content, and interaction recognition through video scenes.
RGB-D generally refers to Red, Green, Blue plus Depth data captured by RGB-D sensors. An RGB-D image provides a
per-pixel depth information aligned with corresponding image pixels. An image formed through depth information is an
image channel in which each pixel relates to a distance between the image plane and the corresponding object in the
RGB image. The addition of depth information to conventional RGB image helps improve the accuracy and the denseness
of the data.
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| 1. RGB-D
1.1. RGB-D Data Acquisition

Acquisition of depth information is mainly based on triangulation and Time-of-Flight (ToF) techniques. The former
techniqgue may be implemented passively using stereovision, which retrieves depth information by capturing the same
scene from different point of views. Stereovision emulates a human vision principle where depth is computed as a
disparity between images taken from different viewpoints. This may require knowledge of the geometry of cameras and
calibration needs to be performed for each change in system configuration. An active approach relies on structured light,
which uses an IR light pattern onto the scene to estimate disparity through varying object’s depth. In addition to this, ToF
and Light Detection and Ranging (LIDAR) scanners measure the time that light takes to hit an object’s surface and return
to the detector. LIDAR uses mechanical components to its surrounding. However, ToF performs distance computation
using integrated circuits. Chen et al. 1 and others [& have briefly surveyed depth data acquisition in RGB-D sensors.

1.2. RGB-D Sensors

Most of the consumer RGB-D sensors rely on structured light or ToF approaches. Such RGB-D sensors possess noise
and data distortions, which are tackled by specifically designed algorithms. Nevertheless, ToF provides a better depth
resolution than the others, which is about a few millimeters. Moreover, structured light systems are not beneficial in
outdoor scenarios because solar light strongly affects IR cameras. HAR tasks that do not require very high depth
resolution and precision have been easily implemented using both structured light sensors and ToF devices. Such devices
represented a very good compromise between cost, performance, and usability, and allowed implementation of
unobtrusive and privacy-preserving solutions. Some consumer-preferred RGB-D sensors are outlined in the following
subsections.

1.2.1. Microsoft® Kinect™ Sensors

Microsoft released the Kinect RGB-D sensor, a low-cost but high-resolution tool that could be easily interfaced to a
computer, and whose signals could be easily manipulated through common academic practices. The Kinect sensor V1
uses structured light, and Kinect V2 is based on ToF. The latter exhibits less software complexity but requires fast
hardware, such as pulse width modulation (PWM) drivers. The Kinect technology pushed the development of depth-based
algorithms and processing approaches. Kinect has been discontinued, but alternative sensors are available in the market.
Azure Kinect is a recent spatial computing developer kit with computer vision and speech models, and a range of
development interfaces that can be connected to Azure cognitive services. Azure Kinect is not available for consumers



and thus not a replacement of Kinect. Michal et al. &l presented a comprehensive evaluation of Azure Kinect and its
comparison with both versions of Kinect. Different versions of Kinect Sensor are shown in Figure 1a (from bottom to top—
Kinect v1, Kinect v2, and Azure Kinect).
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Figure 1. Various RGB-D sensors: (a) Microsoft Kinect BIEIE! (b) Intel RealSense L515 1, and (c) Orbbec Astra Pro [&l,

The Kinect sensor makes the task of capturing RGB-D data easier by sensing the depth dimension of the subject and its
environment. It also interprets the movement performed by a subject and transforms it into a format that practitioners can
use for new experiments. Computer vision researchers have leveraged Kinect's vision technology for performing tasks
such as aiding children to overcome autism & and for doctors in their operating rooms. Azure Kinect has been released
for developers and industries which will potentially transform human—computer interaction in various industries including
manufacturing, education 29, healthcare 14, retail 14, transportation 2, and beyond.

1.2.2. Intel® RealSense™ Depth Cameras

Intel RealSense depth cameras encompass a family of stereoscopic and portable RGB-D sensors which includes subpixel
disparity accuracy, assisted illumination, and performs well even in outdoor settings. Keselman et al. 4 provided a brief
overview of Intel RealSense cameras. The R400 family is successor to the R200 family that includes improvements in its
stereoscopic matching algorithm and correlation cost function as well as an optimization in design, which enables the
R400 family to consume lower power than R200 while operating on the same image resolutions. Intel has divided its
RGB-D sensors into different categories which includes stereo depth, LIDAR, coded light, and tracking sensors. The Intel
RealSense LiIDAR Camera L515 23] shown in Figure 1b is the smallest high-resolution LIDAR depth camera to date. The
Intel D400 1€ series uses Active IR stereo technology. The Intel SR 1 series uses coded light technology; however, the
recently introduced L series uses LIiDAR technology for acquiring depth information. The L series has significantly reduced
the size of the sensor, which can accelerate the use of RGB-D sensors in HAR.

1.2.3. Orbbec® Depth Cameras

Orbbec Astra sensors incorporate processor which replaces traditional cable-based connection to sensor.The Orbecc
camera-computer package is economical compared to Kinect or RealSense devices. Several SDKs are available
including Astra SDK (developed by the manufacturers of the sensor) and OpenNI framework for 3D natural interaction
sensors. The use of different sensors in the same problem could affect the accuracy of the process. Coroiu et al. 18
demonstrated safe exchange of Kinect sensor with the Orbbec sensor. According to the experiments, over 16 classifiers
demonstrated that choice of sensor does not affect the accuracy. However, seven classifiers produced a drop-in accuracy.
Furthermore, calibration algorithms using different RGB-D sensor are compared in 19, In general, RGB-D sensors exhibit
acceptable accuracy, but in some cases, calibration processes are critical to increase the sensor’s accuracy and enable it
to meet the requirements of such kinds of applications.

| 2. Classical Machine Learning-Based Techniques

Classical machine learning-based action recognition techniques use handcrafted features and can be classified on the
basis of RGB data 29, depth data 21122 skeleton sequences 23], and methods using a combination 24 of these data
modalities (as illustrated in Figure 2). Table 1 summarizes the best performing techniques which achieved benchmark
accuracies for popular RGB-D datasets in action recognition research. The following subsections will discuss depth-,
skeleton-, and RGB-D-based methods.
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Figure 2. Hierarchy of action recognition techniques based on handcrafted features that use classical machine learning.

Table 1. Summary of popular action recognition datasets and methods that achieved the best recognition accuracy. Note
that PDF stands for probability distribution function, i3D stands for inflated 3D, OF stands for Optical Flow, and GCN
stands for Graph Convolutional Networks.
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2.1. Depth Data-Based Techniques

Motion changes in the depth maps of the human body are used to represent action. Depth data can be observed as a
space—time structure which is extracted from the appearance and motion information to describe human actions. Yang et
al. Bl have proposed a supernormal vector feature through a depth map sequence for action representation. Oreifej et al.



[21] have proposed an orlﬁ&tatlon hlsto%ram feature of 4D normal vectors to N’egaresent the appearance |nformauqn of a 3D
HuDaAct
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surface where a Dersnectlve independent feature and a principal comDonen't—hlstoqram are used to represent action. Yang

einal. #3 ave proposed the Depth MotionsMap:(DMM) to project spatiodemporal depth structure onto motion history
maps. Mo(?gsf%)cent motion history maps are represented by Histogram of Gradients (HoG) features in series to represent
acflong CThAG.N*I?(L;TEt al. 54 have us&d local binary features instead’of HoG features; they 55 also investigated spatio-temporal
dmpthl—"strtﬁfgygp from front, side, and upper directions. Miaez et al. 28l have considered discrete cosine wariation to

compress the depth map and represent action through features using transform coefficients.
2.2. Skeleton Sequence-Based Techniques

Changes in position and appearance changes in human joint points between frames are used to describe action. Xia et al.
(28] have modeled action through a discrete hidden Markov model. Action features have also been extracted through 3D
Histograms of Oriented Displacements (HoD) B2, Accumulation of Motion Energy (AME) function aided with the
Eigenjoint-based method 23], and through a longest common sequence algorithm B8 to select high-discriminative power
features from the relative motion trajectories of the skeleton.

2.3. RGB-D Data-Based Techniques

The research results in 2232591 show that depth-based methods achieve better action recognition performance than
RGB-based methods. Therefore, some researchers have also tried a fusion of different modalities. Chaaroui et al. [6%
have investigated the fusion of skeleton and depth data to overcome problems caused by occlusion and perspective
changes in skeleton features. In addition, a sparse regression learning-based method to fuse depth and skeleton features
has been proposed by Li et al. 24, A multi-kernel-based learning method for describing actions has been proposed by
Althloothi et al. 81 they calculated spherical harmonics through depth data and fused this with the spatial information of
skeleton joints. Furthermore, RGB and depth data fusion has also been attempted by some researchers. For example, Liu
et al. (82 ysed generic algorithms, Jalal et al. 83 merged spatio-temporal features, and Ni et al. 4! introduced the multi-
level fusion of RGB and depth data features. However, to answer the missing modality problem, Kong et al. €3 have
proposed a discriminative relational representation learning (DRRL) method. In the absence of a single modality in testing,
this method transfers knowledge from training data to substitute the missing modality and achieves better recognition
performance. The main concern with RGB-D data fusion is that it adds more computational complexity to the action
recognition algorithm. Yu et al. 88! have proposed a binary representation for RGB-D data fusion with structure-preserving
projections. This approach produced high efficiency and effectiveness on various action recognition benchmarks of RGB-
D data.

| 3. Deep Learning

Computer vision researchers have directed considerable attention to the application of deep learning in action recognition.
The classical machine learning-based methods are based on handcrafted features, which are not robust. Deep learning-
based methods have been utilized due to their automated feature learning from images. Researchers have extracted
action features from RGB data, depth data, and skeleton sequences using deep learning methods. The following
subsections discuss the fundamental variants of neural networks, and later we present some modern deep learning-based
approaches used in RGB-D data.

3.1. Neural Networks Variants

Recent successes in deep neural networks have boosted research in pattern recognition and computer vision. Some
commonly used variants of neural networks are briefly outlined in following subsections.

3.1.1. Convolutional Neural Networks (CNN)

CNNSs represent one of the most notable deep learning approaches, where they have been highly effective in a variety of
computer vision applications. CNNs are good at recognizing patterns in Euclidean data, i.e., images, text, and videos.
CNN works with a mathematical function called convolution, which is a special kind of linear operation. In convolution,
input neurons are multiplied with a set of weights that are commonly known as filters or kernels. The filters act as a sliding
window across the whole image and enable CNNs to learn features from neighboring cells. Within the same layer, the
same filter will be used throughout the image, this is referred to as weight sharing. For example, using a CNN to classify
images of dogs vs. non-dogs, the same filter could be used in the same layer to detect the nose and the ears of the cat.
There are four basic ideas behind CNN that benefit from the characteristics of natural signals: local connections, shared



weights, pooling, and the use of many layers [4. These four key ideas can be labeled as the Convolution layer, Rectified
Linear Unit (ReLU) layer, Pooling, and Fully Connected (FC) Layer, respectively. An example of CNN architecture is
presented in Figure 3a, originally shown in [&l,
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Figure 3. lllustration of deep learning techniques for processing RGB-D data. (a) Convolutional Neural Network (CNN).
(b) Long Short-Term Memory (LSTM). (c) Graph Convolutional Network (GCN).

3.1.2. Recurrent Neural Networks (RNN)

The Recurrent Neural Network (RNN), Auto-Associative, or Feedback Network is a type of neural network that has
variants including Gated Recurrent units. RNNs have been quite successful in conducting tasks like speech recognition,
caption generation, machine translation, image/video classification, human dynamics, and action recognition, among other
applications. The RNN function is an alternative to CNN; the RNN function is good at learning dependencies among
spatially correlated data like image pixels €. RNN cannot store information for a longer duration. Long Short-Term
Memory (LSTM) is a special kind of RNN capable of learning temporal relationships on a long-term scale. LSTM 9 uses
a gates mechanism: write (input gate), read (output gate), and reset (forget gate), where this gates mechanism controls
the behavior of its memory cells. The use of LSTM has produced effective results in speech recognition, especially in
phoneme recognition. However, learning with LSTM is often challenging in real-time sequences ZY. An example of LSTM
architecture is presented in Figure 3b, originally shown in 2,

3.1.3. Graph Convolutional Networks (GCN)

Earlier variants of neural networks are implemented using regular or Euclidean data. However, real-life data have a graph
structure that is non-Euclidean. Therefore, the non-regularity of data structures has led to advancements in graph neural
networks. Graph Convolutional Networks (GCN) are also considered as one of the basic Graph Neural Networks variants.
Convolution in GCNs is the same operation as in CNNs. GCNs 22 are an efficient variant of CNNs on graphs. In GCNS,
the model learns from the neighboring nodes by stacking layers of learned first-order spectral filters followed by a
nonlinear activation function to learn graph representations. For simplicity, GCNs take a graph with some labeled nodes
as input and generate label predictions for all graph nodes. GCNs could be divided into two approaches: Spatial GCNs
and Spectral GCNs. An example of GCN is presented in Figure 3c, originally shown in [Z4],

3.2. Deep Learning-Based Techniques Using RGB-D Data

Deep learning can directly obtain hierarchical features from different data modalities and provides a more effective
solution. Accordingly, appearance and optical sequences can be used as inputs to deep networks. Besides aspects of
appearance and motion information, deep learning-based methods can also be applied using depth sequences and
skeleton joint information. Wang et al. /2 have used convolution to learn action features from depth data. They [&
combined motion and structure information in a depth sequence by pairing structured dynamic images at the body, part,
and joint levels through bidirectional rank pooling. Every pair is constructed from depth maps at each granularity level and
serves as input to CNN. Song et al. L2 have proposed a model that uses different levels of attention in addition to an RNN
with LSTM to learn discriminative skeleton joints. Ye et al. (8] have embedded temporal information with dense motion
trajectories to learn actions.

Yan et al. 88 have modeled relationships between graphs and joints by using a graph-oriented CNN. Deep learning-based
feature learning has been shown to provide better performance than handcrafted feature extraction methods; however,
there are still challenges concerning RGB-D data fusion. Deep learning-based action recognition methods use different



standalone as well as hybrid neural network architectures, which can be classified as Single-Stream, Two-Stream, Long-
term Recurrent Convolutional Network (LRCN), and Hybrid network-based architectures. The following subsections
summarize these architectural styles.

3.2.1. Single Stream

A single-stream model is similar to the AlexNet 2 type of image classification network. Single-stream architecture can
take advantage of regularization through local filters, parameter sharing at convolution layers, and local invariance
building neurons (max pooling). Such neural network architecture shifts the engineering focus from feature design
strategies to network structure and hyperparameter tuning strategies. Architectural details from AlexNet 79 can be used
with different hyperparameter configurations. A single-stream architecture fuses information from all the frames in the
softmax layer connected to the last fully connected layers with dense connections. Given an entire action video, the video-
level prediction can be produced by forward propagation of each frame individually through the network and then
averaging individual frame predictions over the duration of the video. However, single-stream architecture has been a
foundation for other extended architectures. Some possible extensions to single-stream architecture have been explored
by Baccouche et al. B9, Jj et al. [B1], and Karpathy et al. (23],

3.2.2. Two Stream

The two-stream model uses two disjointed CNNs containing spatial and temporal information, which are later fused
together. The spatial network performs action recognition from single video frames, while the temporal network learns to
recognize action from motion, i.e., dense optical flow. The idea behind this two-stream model relates to the fact that the
human visual cortex contains two pathways for object and motion recognition, i.e., the ventral stream performs object
recognition and the dorsal stream recognizes motion. Spatial-stream CNN is modelled similar to the single-frame model
discussed earlier. Given an action video, each frame is individually passed through the spatial network where an action
label is assigned to each frame. The temporal-stream CNN is not the same as motion-aware CNN models (which use
stacked single video frames as input). It takes stacked optical flow displacement fields between several consecutive
frames as input to explicitly learn a temporal feature.

In two-stream models, the pioneering work of Simonyan and Zisserman 2 uyses a single image and multi-optical flow
sequence stack as input to the 2D CNN. Zhang et al. 83 have extended Simonyan and Zisserman's 2 work by using a
motion vector instead of optical flow as an input to improve performance and comprehend real-time action recognition.
Feichtenhoer et al. 84 have proposed an innovative approach involving moving the classification layer to the middle of the
network for spatio-temporal information fusion, and this was shown to improve the accuracy. Wang et al. B3 have
contributed to the input and training strategy of convolution and proposed Temporal Segment Network (TSN), improving
the two-stream CNN. The notion of TSN was based on long-range temporal structural modeling. Later, Lan B8 and zZhou
[87] enhanced the TSN. Carreira et al. 88 adopted the structure of Inception-v1 and inflated two-stream CNN to 3D CNN
for action recognition. Zhu et al. B2 have expanded two-stream CNN to a 3D structure by drawing out the pooling
operation.

3.2.3. Long-Term Recurrent Convolutional Network (LRCN)

LRCN uses CNN in co-ordination with an LSTM-based network. In LSTM-based deep learning methods, actions can be
represented as feature changes between frames in the video, LSTM is widely used to improve action recognition
techniques. Ng et al. 24 have presented a linear RNN for recognizing human actions that connects the output of a CNN
with an LSTM cell. A new architecture—P3D ResNet—has been proposed by Qiu et al. 21, which uniquely places all the
variants of blocks in a different placement of ResNet. In skeletal data, to deal with noise, Liu et al. 22 extended the idea to
analyze spatio-temporal domains simultaneously by introducing an effective tree structure-based traversal framework.
This framework uses a cross-modal feature fusion strategy within LSTM unit and a gating mechanism to learn the
reliability of sequential data in long-term context representation. For mapping video frames with variable length inputs to
variable length outputs, Donahue et al. 23! have proposed an LRCN. Unlike those methods that learn CNN filters based
on a stack of a fixed number of input frames, LRCN 23] is not constrained to fixed-length input frames and thus can learn
to recognize more complex action video. As illustrated in Figure 4 (RGB-D input visuals taken from the work in [E8),
individual video frames are first passed through CNN models with shared parameters and are then connected to a single-
layer LSTM network. More precisely, the LRCN model combines a deep hierarchical visual-feature extractor, i.e., a CNN
feature extractor, with an LSTM that can learn to recognize temporal variations in an end-to-end fashion.
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Figure 4. A possible architecture of LRCN with RGB-D input. Input from each modality, i.e., RGB, RGB + Skeleton joints,

Depth, Depth + Skeleton joints, and IR are passed through a CNN layer for extracting visual features and an LSTM layer

for sequence learning. Scores from each model are then fused and mapped to the number of classes for predictions.
Visuals of RGB-D input are taken from NTU RGB-D 60 dataset 22,
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