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Cyberspace has become an indispensable factor for all areas of the modern world. The world is becoming more

and more dependent on the internet for everyday living. The increasing dependency on the internet has also

widened the risks of malicious threats. On account of growing cybersecurity risks, cybersecurity has become the

most pivotal element in the cyber world to battle against all cyber threats, attacks, and frauds. The expanding

cyberspace is highly exposed to the intensifying possibility of being attacked by interminable cyber threats. The

objective of this survey is to bestow a brief review of different machine learning (ML) techniques to get to the

bottom of all the developments made in detection methods for potential cybersecurity risks. These cybersecurity

risk detection methods mainly comprise of fraud detection, intrusion detection, spam detection, and malware

detection. In this review paper, we build upon the existing literature of applications of ML models in cybersecurity

and provide a comprehensive review of ML techniques in cybersecurity. To the best of our knowledge, we have

made the first attempt to give a comparison of the time complexity of commonly used ML models in cybersecurity.

We have comprehensively compared each classifier’s performance based on frequently used datasets and sub-

domains of cyber threats. This work also provides a brief introduction of machine learning models besides

commonly used security datasets. Despite having all the primary precedence, cybersecurity has its constraints

compromises, and challenges. This work also expounds on the enormous current challenges and limitations faced

during the application of machine learning techniques in cybersecurity.

cybersecurity  machine learning  malware detection  intrusion detection system

spam classification

1. Performance Comparison of Machine Learning Models
Applied in Cybersecurity

Researchers are investigating machine learning techniques to detect different cybercrimes in cybersecurity. We

have provided a detailed discussion of various cyber threats in Section 2. Furthermore, we have briefly presented

an overview of frequently used security datasets in Section 2. This section provides a comprehensive survey of

each ML model applied to deal with different cyber threats. Subsequent lines will explain the description of each

column in Table 1, Table 2, Table 3, Table 4, Table 5 and Table 6. The ML technique columns describe the

considered machine learning model. We have considered six ML models for this study: random forest, support

vector machine, naïve Bayes, decision tree, artificial neural network, and deep belief network.
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Table 1. Evaluation of SVM in Cybersecurity.

Table 2. Evaluation of Decision Tree in Cybersecurity.

ML
Technique Domain Dataset Reference Year Approach/Domain Results

AccuracyPrecision Recall

SVM

IDS

NSL-KDD

2019 Anomaly-Based 89.70%   

2016 Anomaly-Based 98.89% -  

2014 Hybrid-Based 82.37% 74% 82%

DARPA
2007 Hybrid-Based 69.80%   

2014 Anomaly-Based 95.11%  -

KDD
CUP99

2011 Hybrid-Based 95.72%   

2015 Hybrid-Based 96.08% -  

2014 Hybrid-Based 99.30% -  

Malware

Custom
Dataset

2019 Static 95.17% 95.57% 95%

2018 Static 89.91% 88.84%  

2018 Dynamic 96.27% 96.16% 93.71%

Malware
Dataset

2017 Static 94.37%   

2013 Dynamic 95%   

2015 Dynamic 97.10%   

Enron
2016 Static 91% 84.74% 100%

2007 Static 96.92% 92.74% 97.27%

Spam

SMS
Collection

2014 SMS Spam 98.61% 98.60% 98.60%

Spambase
2015 Email Spam 79.50% 79.02% 68.67%

2011 Email Spam 96.90% 93.12% 95%

Twitter
Dataset

2018 Spam Tweets 93.14% 92.91% 93.14%

2015 Spam Tweets 95.20%  93.60%

2020 Spam Tweets 98.88%  94.47%
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Table 3. Evaluation of DBN in Cybersecurity.

ML
Technique Domain Dataset Reference Year Approach/Domain Results

AccuracyPrecision Recall

Decision
Tree

IDS

KDD

2018 Misuse-Based 99.96%   

2005 Hybrid-Based 99.85% 99.70% 98.10%

2017 Hybrid-Based 86.29%  78%

NSL-KDD

2014 Anomaly-Based 99.64%   

2017 Hybrid-Based 90.30% 91.15% 90.31%

2019 Hybrid-Based 93.40%   

KDD
CUP99

2015 Misuse-Based 95.09%   

2016 Hybrid-Based 99.62%   

2018 Hybrid-Based 92.87% 99.90%  

Malware

Custom
2016 Static 99.90% 99.40%  

2017 Static 84.7%   

Malware
Dataset

2014 Static  97.90% 96.70%

2013 Static 92.34% - 93%

2013 Dynamic 88.47%   

SMOTE

2018 Dynamic 92.82%   

2018 Dynamic 95.75%   

2012 Static 96.62%   

Spam

SMS
Collection

2014 SMS Spam 96.60% 96.50% 96.60%

Enron
2016 Email Spam 96% 98% 94%

2016 Email Spam 96% 98% 94%

Spambase

2014 Email Spam 92.08% 91.51% 88.08%

2014 Email Spam 94.27%  91.02%

2013 Email Spam 92.34% 93.90% 93.50%
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Table 4. Evaluation of ANN in Cybersecurity.

ML
Technique Domain Dataset Reference Year Approach/Domain Results

AccuracyPrecision Recall

DBN

IDS

KDD
2015 Anomaly-Based 97.50%   

2015 Hybrid-Based 96.70% 97.90%  

NSL-KDD
2017 Anomaly-Based 90.40% 88.60% 95.30%

2019 Anomaly-Based 99.45% 99.20% 99.70%

ISCX
Dataset

2015 Misuse-Based 99.18% - -

Malware

DLL 2008 Static 89.90% 87.40% 98.80%

Custom

2016 Static 89.03% 83% 98.18%

2016 Dynamic 71% 78.08% 59.09%

2016 Hybrid 96.76% 95.77% 97.84%

KDD
CUP99

2015 Hybrid 91.40% - 95.34%

Spam

TARASSUL
2016 Email Spam 96.40% 95.31% 93.59%

2016 Email Spam 97.50% 98.39% 98.02%

Enron
2016 Email Spam 95.86% 96.49% 95.61%

2007 Email Spam 97.43% 94.94% 96.47%

Spambase
2018 Email Spam 89.20% 96%  

2018 Email Spam 90.69% 97%  
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ML
Technique Domain Dataset Reference Year Approach/Domain Results

AccuracyPrecision Recall

ANN IDS

NSL-KDD

2019 Anomaly-Based 94.50% - -

2014 Anomaly-Based 97.53% - -

2014 Hybrid-Based 97.06% - -

DARPA
2015 Anomaly-Based 80% - 80%

2018 Misuse-Based 99.82% - -
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Table 5. Evaluation of Random Forest in Cybersecurity.

ML
Technique Domain Dataset Reference Year Approach/Domain Results

AccuracyPrecision Recall

KDD
CUP99

2009 Anomaly-Based - 97.89% 98.94%

2012 Anomaly-Based 62.90% - -

Malware

VX
Heavens

2012 Hybrid 88.89% 88.89% -

2012 Static 92.19% - -

2013 Static 88.31% - -

Enron 2018 Dynamic 82.79% - -

Comodo 2016 Static 92.02% - -

Spam

Spam-
Archive

2011 Image Spam 93.70% 87% 94%

Spambase

2016 Email Spam 91% - -

2018 Email Spam 92.41% 92.40% 92.40%

2013 Hybrid 93.71% 95% -

Twitter
Dataset

2018 Spam Tweets 91.18% 91.80% 91.18%
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ML
Technique Domain Dataset Reference Year Approach/Domain Results

AccuracyPrecision Recall

Random
Forest

IDS

KDD
2019 Anomaly-Based 99.95%  99.95%

2016 Anomaly-Based 88.65% - 94.62%

NSL-KDD

2019 Anomaly-Based 95.10% 92.50%  

2019 Hybrid-Based 75.30% 81.40% 75.30%

2017 Hybrid-Based 97.10%   

KDD
CUP99

2019 Anomaly-Based 96.30% 99.80%  

2016 Anomaly-Based - 98.10% 98.10%

2017 Hybrid-Based 98.10% - -

Malware
Custom
Dataset

2019 Static 98.63% 98.58% 98.69%

2018 Dynamic 96.34% 96.59% 93.46%

Malware
Dataset

2016 Dynamic 96.14%   

2014 Hybrid  96.50% 97.30%
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Table 6. Evaluation of Naïve Bayes in Cybersecurity.

ML
Technique Domain Dataset Reference Year Approach/Domain Results

AccuracyPrecision Recall

2017 Hybrid 91.40% 89.80% 91.10%

VirusShare 2009 Static 95.60% 96%  

Spam

SMS
Collection

2014 SMS Spam 97.18% 97.30% 97.20%

Spambase

2013 Email Spam 99.54%   

2010 Email Spam 95.43%   

2013 Email Spam 93.89% 95.87% 94.10%

Twitter
Dataset

2011 Spam Tweets 95% 95.70% 95.70%

2016 Spam Tweets 96.20% 98.60% 75.50%

2018 Spam Tweets 93.43% 93.25% 93.43%
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ML
Technique Domain Dataset Reference Year Approach/Domain Results

AccuracyPrecision Recall

Naïve
Bayes

IDS

DARPA
2010 Anomaly-Based 91.60%  61.60%

2007 Misuse-Based 99.90% 99.04% 99.50%

NSL-KDD

2015 Misuse-Based 81.66%   

2012 Anomaly-Based 36% 35% 80%

2012 Anomaly-Based 99% 83% 78.90%

KDD
CUP99

2004 Anomaly-Based 99.27%   

2007 Anomaly-Based  96% 99.80%

2018 Signature-Based 99.72%  100%

Malware

VX
Heaven

2015 Static 88.80%   

NSL-KDD
2013 Hybrid 99.50%   

2007 Hybrid 99%   

Malware
Dataset

2013 Hybrid 89.81% - 90%

2015 Hybrid 95.90% 95.90% 95.90%

2014 Hybrid  97.50% 67.40%
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We focus on three critical cyber threats, namely intrusion detection, spam detection and malware detection. The

domain columns state the significant cybersecurity threats considered for this review. The reference number and

year columns depict the citation number of each article and published year, respectively. The values of approach or

sub-domain columns are different for each cyber threat. IDS domain has three values that are anomaly-based,

signature/misuse-based and hybrid-based. Malware has three further sub-classifications that are static, dynamic

and hybrid. In the case of spam, sub-domains correspond to the medium in which the authors tried to identify the

spam such as image, video, email, SMS and tweets. A description of each sub-domain/approach has been

provided in Section 2. Finally, the result attribute presents the evaluation of each classifier applied in a particular

sub-domain of cyber threat on a specific dataset and provided in the cited paper mentioned in the reference

column.

2. Support Vector Machine

The principle superiority of support vector machine (SVM) is that it produces the most successful results for

cybersecurity tasks. SVM distributes each data class on both sides of the hyperplane. SVM separates the classes

based on the notation to the margin. Support vector points are those points that lie on the border of the hyperplane.

The major drawback of the support vector machine is that it consumes an immense amount of space and time.

SVM requires data trained on different time intervals to produce better results for a dynamic dataset .

SVM showed an accuracy of 99.30% with KDD Cup 99 dataset for IDS . 96.92% is the best reported accuracy for

malware detection using Enron dataset  and 96.90% with Spambase to classify spam emails . The best

reported recall for SVM to detect intrusion is 82% , malware is 100% , and spam is 98.60% . SVM has

obtained best precision while detecting the intrusion is 74% , malware is 96.16% , and spam is 98.60% . A

detailed performance comparison of SVM to various cyber threats on the frequently used dataset is presented in

Table 1.

3. Decision Tree

Decision tree (DT) belongs to the category of supervised machine learning. DT consists of a path and two nodes:

root/intermediate and leaf. Root or intermediate node presents an attribute that followed a path that corresponds to

the possible value of an attribute. Leaf node represents the final decision/classification class. A decision tree is

ML
Technique Domain Dataset Reference Year Approach/Domain Results

AccuracyPrecision Recall

Spam

SMS
Collection

2014 SMS Spam 97.52% 97.50% 97.50%

Spambase

2011 Email Spam 99.46% 99.66% 98.46%

2015 Email Spam 76.24% 70.59% 72.05%

2015 Email Spam 84% 89% 78%

Twitter
Dataset

2013 Spam Tweets 92% 91.60% 91.4%

2018 Spam Tweets 92.06% 91.69% 91.96%
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[24] [11] [17]
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used to find the best immediate node by following the if-then rule . Further, 99.96% is the reported accuracy of

DT while detecting the anomaly-based IDS with KDD dataset . With standard SMOTE dataset, DT shows an

outstanding accuracy of 96.62% for malware detection . With the Enron dataset, DT correctly classified ham

emails with an accuracy of 96% . The best reported recall for DT to detect intrusion is 98.10% , malware is

96.70% , and spam is 96.60% . DT has obtained best precision while detecting the intrusion is 99.70% ,

malware is 99.40% , and spam is 98% . A detailed performance comparison of decision tree to various cyber

threats on the frequently used dataset is presented in Table 2.

4. Deep Belief Network

A deep belief network (DBN) consists of various middle layers of restricted Boltzmann machine (RBM) organized

greedily. Every layer communicates with the layers behind it and the layers ahead of it. There is no lateral

communication between the nodes within a layer. Every layer serves as both an input layer and an output layer,

except the first and the last layers. The last layer functions as a classifier. The primary purpose of a deep belief

network is image clustering and image recognition. It deals with motion capture data. Deep belief network has

shown the accuracy of 97.50% for IDS , 91.40% for malware detection  and 97.43% for spam detection 

with KDD, KDD CUP99, and Spambase datasets, respectively. The best reported recall for DBN to detect intrusion

is 99.70% , malware is 98.80% , and spam is 98.02% . DBN obtained the best precision while detecting

the intrusion is 99.20% , malware is 95.77% , and spam is 98.39% . A detailed performance comparison of

DBN to various cyber threats on the frequently used dataset is presented in Table 3.

5. Artificial Neural Network

An artificial neural network (ANN) classier consists of hidden neuron input and output layers and performs in two

stages. The first stage is called feedforward. In this stage, each hidden layer receives some input nodes and based

on the input layer and activation function, the error is calculated. In the second stage, namely feedback stage, the

error is sent back to the input layer and process is continued in iterations until the correct result is gained . The

artificial neural network showed an accuracy of 97.53% for IDS , 92.19% for malware detection , and 92.41%

for spam detection with NSL-KDD, VX Heavens, and Spambase datasets, respectively. The best reported recall for

ANN to detect an intrusion is 98.94% , and spam is 94% . ANN has obtained best precision while detecting

the intrusion is 97.89% , malware is 88.89% , and spam is 95% . A detailed performance comparison of

ANN to various cyber threats on the frequently used dataset is presented in Table 7.

6. Random Forest

Random forest (RF) follows through the task by combing different predictions generated by joining different

decision trees. RF raised a hypothesis to obtain a result . RF falls under the category of ensemble learning. RF

also termed as random decision forest. RF is considered as an improved version of CART that is a sub-type of a

decision tree.
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RF has shown an accuracy of 99.95% with IDS , 95.60% with malware detection  and 99.54% for spam

detection  with KDD, VirusShare, and Spambase datasets, respectively. The best reported recall for RF to detect

intrusion is 99.95% , malware is 97.30% , and spam is 97.20% . RF obtained the best precision while

detecting the intrusion is 99.80% , malware is 98.58% , and spam is 98.60% . A detailed performance

comparison of RF to various cyber threats on the frequently used dataset is presented in Table 5.

7. Naïve Bayes

The major limitation for Naïve Bayes (NB) classifier is that it assumes that every attribute is independent, and none

of the attributes has a relationship with each other. This state of independence is technically impossible in

cyberspace. Hidden NB is an advanced form of Naïve Bayes, and it gives 99.6% accuracy . Naïve Bayes

showed an accuracy of 99.90% with DARPA dataset for IDS . 99.50% is the best reported accuracy for malware

detection using NSL-KDD dataset . With Spambase dataset, Naïve Bayes showed considerable accuracy of

96.46 % to classify spam or ham email . The best reported recall for NB to detect intrusion is 100% , malware

is 95.90% , and spam is 98.46% . NB obtained the best precision while detecting the intrusion is 99.04% ,

malware is 97.50% , and spam is 99.66% . A detailed performance comparison of NB to various cyber threats

on the frequently used dataset is presented in Table 6.
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