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Developing realistic data sets for evaluating virtual screening methods is a task that has been tackled by the

cheminformatics community for many years. Numerous artificially constructed data collections were developed, such as

DUD, DUD-E, or DEKOIS. However, they all suffer from multiple drawbacks, one of which is the absence of experimental

results confirming the impotence of presumably inactive molecules, leading to possible false negatives in the ligand sets.

In light of this problem, the PubChem BioAssay database, an open-access repository providing the bioactivity information

of compounds that were already tested on a biological target, is now a recommended source for data set construction.

Nevertheless, there exist several issues with the use of such data that need to be properly addressed. In this article, an

overview of benchmarking data collections built upon experimental PubChem BioAssay input is provided, along with a

thorough discussion of noteworthy issues that one must consider during the design of new ligand sets from this database.

The points raised in this review are expected to guide future developments in this regard, in hopes of offering better

evaluation tools for novel in silico screening procedures.
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1. Introduction

As demonstrated in the literature and the previous section, data retrieved from PubChem BioAssay may be used for

various purposes in cheminformatics-related research, including benchmarking data set construction. Due to the

availability of a wide range of assays with diverse ligand sets that the database offers, it is important to be conscious of all

the issues that may arise regarding the usage of such large data , in terms of assay selection and data curation, to

properly employ these abundant resources.

2. Assay Selection for Evaluating Virtual Screening Methods

2.1. Assay Selection as Regards the Data Size and Hit Rates

One of the first questions that we have to face when using data from the PubChem BioAssay repository to build

benchmarking data sets concerns the assay(s) that should be chosen. As mentioned earlier in the manuscript, as of 30

April 2020, there were over a million assays deposited on the database. However, only a few of them can be deemed

suitable for method evaluation purposes. There are many factors that one should consider before deciding which assay(s)

to use. We herewith propose, as primary conditions to filter out unsuitable assays, the selection of only small-molecule

HTS assays yielding biologically active molecules. RNAi assays, on the other hand, were conducted on microRNA-like

molecules comprising twenties of base pairs that violate most drug-likeness rules of thumb and are, therefore, not of great

interest in small-molecule drug discovery. For the sake of having an acceptable amount of ligands in the data that may

give a meaningful retrospective evaluation of in silico screening methods, we recommend that only assays with no fewer

than 10 actives selected among at least 300 tested substances should be kept. Data sets including only nine or fewer

actives are considered too small and would be over-challenging for virtual screening, especially for machine-learning

algorithms to learn anything meaningful. On the other hand, assays conducted with fewer than 300 substances while

yielding more than 10 actives give hit rates that are deemed too high in comparison to those typically observed in

experimental screening decks , even higher than those of existing data sets such as DUD , DUD-E , or DEKOIS 2.0

. There may exist, of course, assays with high hit rates that remain after this initial check (e.g., AIDs 1, 3, 720690 and

720697); however, the aforementioned conditions are proposed to demonstrate that there is only a very small portion of

available PubChem assays (0.20%) whose data may be considered for evaluating virtual screening protocols (Figure 1).

The ligand sets of the remaining assays need to be further examined and may be filtered to ensure that their hit rates are

as close as possible to those of experimental HTS campaigns and that they are suitable for the nature of the screening

method (ligand-based or structure-based).
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Figure 1. Primary selection of PubChem assays whose ligand sets should be further considered for evaluating virtual

screening methods. We herewith recommend the use of only small-molecule high-throughput screening (HTS) assays

giving at least 10 biologically active molecules among no fewer than 300 tested substances. Overall, there are only 2117

assays (0.20% of 1,067,896 assays in total, as of 30 April 2020) that remain, indicating a very small portion of PubChem

assays that may be considered after this initial check.

2.2. Assay Selection as Regards the Nature of Virtual Screening

As demonstrated in various papers, a ligand set may be appropriate for the evaluation of only ligand-based in silico

approaches , or only structure-based methods , or sometimes both . This depends on the quantity and the

chemical composition of all molecules that constitute the data set and the availability and the quality of 3-dimensional

structures of relevant protein targets, as well as the definition of binding site(s) in which active substances exert their

bioactivity. Data sets retrieved from the PubChem BioAssay database, being no exception, have to be thoroughly

examined according to the criteria mentioned above before being used to assess a certain virtual screening method.

Ideally speaking, an assay whose ligands are considered for evaluating structure-based approaches needs to be

conducted on a protein target whose structure has been solved at a high resolution, with no ambiguity in terms of electron

density, with at least a molecule of the same phenotype (agonist, antagonist, inhibitor, etc.) as that of the active

compounds. However, targets for which no crystallographic or electron-microscopic structure is deposited on the Protein

Data Bank may also be considered if high-quality homology models are available. An example of this can be seen in the

assay AID 588606, featuring inhibitors of the yeast efflux pump Cdr1. Though the protein target, the ABC (ATP-binding

cassette) drug-resistance protein 1 of Candida albicans (CaCdr1p), has not yet been available in the Protein Data Bank

with a known inhibitor, a homology model of this transporter was generated using the human ABCG5/G8 crystal structure

as the template, and possible binding sites located in the transmembrane domain were identified and validated by means

of atomic modeling and systematic mutagenesis, confirming their essential role in Cdr1p-induced multidrug resistance .

However, caution should be taken when one uses such artificially constructed models as the input for structure-based

screening approaches. On the other hand, the presence of many nonoverlapping binding sites (orthosteric versus

allosteric) in the 3D structures of protein targets (as observed in those of AIDs 1469, 624170, or 624417), either

crystallographic or not, may ultimately become a reason for failures in screening PubChem molecules on such proteins,

especially when there is no information on the exact binding site of the tested substances that can be deduced from the

assay description . As virtual screening performances may vary quite significantly depending on the protein structure

employed as the input , one should therefore be cautious when using data of these assays for evaluating structure-

based screening procedures, lest they give poorer performances than expected due to external reasons that are not

related to the methods themselves. Another point that should not be overlooked concerns assays that were conducted on

substances derived from only a few chemical series, as they may give rise to bias that overestimates the screening

performance, notably that of ligand-based approaches. If another similar assay on the same target but with a more

diverse ligand set (in terms of chemical features) is available, one is recommended to make use of this assay instead.

Otherwise, the “biased” data need further tuning to be deemed suitable for evaluation purposes, e.g., by filtering out
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“redundant” compounds (this point will be thoroughly discussed in the next section of this manuscript). However, this

ligand-filtering process should not lower the number of active substances to a value so small that ligand-based methods

or machine-learning algorithms cannot come up with meaningful results.

2.3. Assay Selection as Regards the Screening Stage

Additionally, the use of data from “primary assays” should be subject to caution, as the activity outcome was only

determined at a single concentration and has not yet been validated on the basis of a dose-response relationship with

multiple tested concentrations ; hence, the potency values of active molecules are not confirmed. As a matter of fact,

some substances originally deemed as active in a primary assay may be denounced as inactive by a subsequent

confirmatory screen, as seen in AIDs 449 and 466 or AIDs 524 and 548. We therefore recommend that primary screening

data should only be used if there exists a confirmatory assay that validates the potency of the selected active molecules.

This practice was already observed in the construction of the MUV data sets by Rohrer and Baumann , in which pairs of

primary and corresponding confirmatory screens were employed, whose data were then combined to form the final ligand

sets. In this manner, the large pool of inactive substances from the primary assay is not neglected, and the bioactivities of

the confirmed hits are indeed guaranteed, affording a vast data set (usually implying a low hit rate) with fully validated

active components. Otherwise, the output data of the primary screens alone should be used with great caution, due to the

risk of assuming “false positives” that may later falsify the virtual screening outcomes. An exhaustive search on the whole

PubChem BioAssay database is therefore of paramount importance to select relevant data sets for the retrospective

assessment of in silico screening protocols in order to ensure the quality of such evaluations.

3. Detecting False Positives among Active Substances

Concerns have long been raised over the presence of chemical-induced artifacts in screening experiments, leading to

false positive findings among the molecules deemed as active . Misinterpretation of the assay

results and subsequent inaccurate conclusions may stem from various reasons largely discussed in the literature. Among

them are off-target effects of compounds exerting unspecific bioactivities, possible biological target precipitation by

organic chemical aggregations, inherent fluorescent properties of substances that interfere with fluorescence emission

detection methods, or luciferase inhibitory activities of molecules that spoil light emission measurements in reporter gene

assays . Active substances whose modes of action are subject to the aforementioned issues must therefore be removed

from the PubChem BioAssay ligand sets before the data can be used for retrospective virtual screening purposes. Rohrer

and Baumann (2009) addressed this problem during the construction of their MUV data sets from the database, designing

a so-called “assay artifacts filter” aiming to eliminate all active ligands that likely become false positives, thus prevent them

from affecting subsequent screening performances. The filter is composed of three filtering “layers”, including (i) the “Hill

slope filter” after which the actives whose Hill slopes for the dose-response curves are lower than 0.5 or higher than 2 are

eliminated, (ii) the “frequency of hits filter” that keeps only the molecules deemed as active in no more than 26% of the

bioactivity assays in which they were tested, and (iii) the “auto-fluorescence and luciferase inhibition filter” that rules out

compounds exhibiting auto-fluorescent properties along with inhibitors of luciferase . All frequent hitters, unspecific

binders (molecules with multiple binding sites), experimentally determined aggregators, and spoilers of optical detection

methods are, as a result, removed from the PubChem data sets after these filtering steps. Such filters indeed have a

profound impact on the population of active substances, as over a half of them were deleted by these “false positives

filters” during the development of our recently introduced LIT-PCBA data set (Figure 4) . This drastic decrease in the

number of confirmed actives also helps lower the “hit rates” observed in our ligand sets (as only the actives were

subjected to these filters), thus bringing them closer to those typically reported in high-throughput screening decks in

reality and lower than those of artificially constructed data sets such as DUD , DUD-E , or DEKOIS 2.0 . This not

only denotes the particular challenge brought about by our data set but, also, highlights the importance of detecting and

removing false positives in assembling active substances.

[11][12]

[2]

[1][2][3][13][14][15][16][17][18][19]

[2]

[2]

[1]

[4] [5] [6]



Figure 4. Total number of active substances that remained after each filtering step was applied to PubChem BioAssay

ligands during the construction of the LIT-PCBA data set : Step 1—inorganic molecules; Step 2a—actives with Hill

slopes <0.5 or >2; Step 2b—actives with a frequency of hits >0.26; Step 2c—actives found among 10,892 confirmed

aggregators, luciferase inhibitors, or auto-fluorescent molecules; Step 3—substances with extreme molecular properties;

and Step 4—3D conversion and ionization failures. It can be observed that the sole step 2a removed the most active

molecules (over 50% of them), thus significantly reducing the population of true actives in comparison to that of true

inactives.

4. Possible Chemical Bias in Assembling Active and Inactive Substances

As previously mentioned, a noteworthy issue of raw data published on PubChem BioAssay lies in the chemically biased

composition of active and inactive substances for a particular target. More specifically, there may exist “analog bias” 

present among the molecules constituting a ligand set, which likely leads to overly good performances of virtual screening

methods. This bias is generally observed in data collections whose actives (or inactives) share similar chemical features,

meaning a large number of these molecules are issued from the same (or similar) scaffolds . As ligand-based and

structure-based screening methods tend to recognize compounds of the same chemical series, such bias may result in an

overestimation of in silico screening performances . Besides, significant differences between active and inactive

molecules, in terms of physicochemical properties, such as molecular mass, octanol-water partition coefficient, or atomic

formal charge, may as well be the source of artificial enrichment . Raw experimental data from PubChem BioAssay

therefore need to be finely tuned before further use, by filtering out most compounds representing the same scaffold while

ensuring that the physicochemical parameters of all included molecules are kept within the same range, so that the

chemical bias, if there were any, in the ligand set would be reduced . An example of the importance of filtering the input

data can be seen in the MTORC1 ligand set (Figure 2) included in our recently introduced LIT-PCBA data collection ,

comprising the molecules tested for an inhibitory activity towards the mTORC1 signaling pathway, targeting the human

serine/threonine-protein kinase mTOR.
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Figure 2. Number of substances falling into each scaffold cluster that includes more than 10 true active molecules (A) or

600 true inactive molecules (B). Bemis-Murcko frameworks derived from the input molecules were first created by

trimming each active and each inactive separately with Pipeline Pilot 19.1.0.1964 . A hierarchical scaffold tree

consisting of canonical SMILES (simplified molecular-input line-entry system) strings that represent the rings, linkers, and

double bonds in each molecule was next generated according to an iterative ring-trimming procedure described by

Schuffenhauer et al. (2007) . All ligands were then clustered based on the smallest scaffold at the root of the scaffold

tree for each ligand. The number that follows each hash symbol indicated in this figure refers to the ordinal number of a

scaffold cluster as issued by Pipeline Pilot. Details of all clusters can be found in the Supplementary Materials (Tables S3

and S4).

As to be expected, the full PubChem BioAssay data feature a larger number of scaffold clusters, with 59 clusters for the

active set and 1151 clusters for the inactive set (against 41 and 1106 clusters in the LIT-PCBA active and inactive ligand

sets, respectively). However, only 18 (out of 342; 5.26%) true actives possess unique scaffolds, meaning nearly 95% of all

active substances in the full PubChem ligand set share chemical similarities with at least another active. Notably, nine

clusters are reported to have more than 10 representatives (Figure 2A and Table S3). The pruned LIT-PCBA active ligand

set, on the other hand, includes no cluster with over 10 members and 21 clusters (51.22%) with only one substance for

each. This means nearly a quarter of the LIT-PCBA active molecules (over four times the value observed in the full

PubChem set) possess unique scaffolds. Moreover, the number of ligands falling into each cluster in the filtered LIT-PCBA

active set is greatly reduced in comparison to that of the unfiltered data (Figure 2A and Table S3). On the other hand,

around 25% of PubChem molecules were deemed to have extreme physicochemical properties and were therefore

discarded as the MTORC1 ligand set was constructed . These observations suggest that (i) there is indeed significant

chemical bias in the full PubChem active ligand composition, and (ii) the filtering steps that were applied to build the LIT-

PCBA data collection helped reduce this bias by lowering the number of active substances sharing the same chemical

features (thus avoiding the presence of too many molecules issued from the same chemotype) and by ruling out

compounds that were too different from others (hence, preventing artificial enrichment). A similar conclusion can be drawn

from the full PubChem inactive ligand set and the corresponding LIT-PCBA data (Figure 2B and Table S4). The benefit of

filtering the PubChem ligands in reducing the chemical bias is again highlighted as the data sets undergo a subsequent

unbiasing procedure using the previously described asymmetric validation embedding (AVE) method , which measures

pairwise distances in the chemical space between molecules belonging to four sets of compounds (training actives,

training inactives, validation actives, and validation inactives; training-to-validation ratio = 3) based on the ECFP4

fingerprints. A nearly zero overall bias value (0.001) was obtained from the LIT-PCBA MTORC1 ligand set after only seven

iteration steps of the AVE genetic algorithm (GA) , while 16 GA iterations were necessary to bring the overall bias of the

full PubChem data set down to 0.006. This denotes that the pruned LIT-PCBA ligands are much less biased, in terms of
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chemical features, than the complete PubChem molecules and confirms the necessity of detecting chemical bias in the

composition of data deposited on PubChem BioAssay and removing them, if there were any, so that the data set is better

adapted for further use.

The impact of filtering the PubChem BioAssay molecules on the subsequent retrospective screening performances can

also be observed with the use of two in silico methods: a 2D similarity search using extended-connectivity ECFP4

fingerprints with Pipeline Pilot  (ligand-based) and molecular docking with Surflex-Dock (structure-based) . Both

data sets (the full PubChem data and the pruned LIT-PCBA MTORC1 ligands) underwent the same screening protocols

using the two aforementioned programs, as described in our previous paper . The screening performance was

evaluated according to the EF1% (enrichment in true actives at a constant 1% false positive rate over random picking)

values obtained by the “max-pooling approach”, taking into account all available PDB templates of the protein target (n =

11), while generating only one hit list that facilitated the post-screening assessments . It was observed that both

methods performed better on the full PubChem data than on the filtered LIT-PCBA ligand set (Table 1). Interestingly, the

true actives that were retrieved along with the top 1% false positives belonged to the same scaffold clusters or to clusters

that were similar to each other. Such observations reconfirm that (i) ligand-based and structure-based screening

approaches tend to recognize compounds that share chemical features, and (ii) the chemical bias present in the complete

PubChem data indeed leads to overoptimistic screening performances. This, again, highlights the importance of filtering

the ensemble of molecules deposited on PubChem BioAssay prior to evaluating the virtual screening procedures—first, to

reduce chemical bias in the composition of the data and, then, to avoid overestimating the real discriminatory accuracy of

in silico methods.

Table 1. Retrospective screening performance of a 2D ECFP4 fingerprint similarity search with Pipeline Pilot and

molecular docking with Surflex-Dock on the full PubChem BioAssay data and the pruned LIT-PCBA MTORC1 ligand set,

demonstrated by the enrichment in true actives at a constant 1% false positive rate over random picking (EF1%) values

and the numbers of true actives retrieved along with the top 1% false positives by the “max-pooling” approach.

Data Sets
2D ECFP4 Fingerprint Similarity Search Molecular Docking

EF1% Number of Retrieved Actives EF1% Number of Retrieved Actives

Full PubChem data 0.6 2 3.2 11

LIT-PCBA MTORC1 data 0.0 0 1.0 1

5. Potency Bias in the Composition of Active Ligand Sets

As of 30 April 2020, there were 1,067,719 small-molecule assays deposited on the PubChem BioAssay database, but

only 240,999 of them (22.6%) yielded active substances with confirmed potency values. These values are provided in

different terms (EC , IC , K , and K ), and the threshold to distinguish true actives from true inactives varies from assay

to assay, depending on the researchers who conducted the experiments. Some assays accept active substances with

potency values above 100 µM (e.g., AIDs 1030, 1490, and 504847), even at the millimolar level (e.g., AIDs 1045 and

1047), while, in some others, several substances with even submicromolar potency are not deemed actives (e.g., AIDs

1221, 1224, and 1345010). It is therefore comprehensible that the potency range of true actives, as well as its distribution,

is quite diverse across all assays of PubChem. As active molecules with high potency towards a biological target are

easier to be picked by both ligand-based and structure-based virtual screening methods , ligand sets with too many

actives whose potency values are in the submicromolar range are prone to overestimating the real accuracy of in silico

screening. PubChem BioAssay data sets, especially those composed of highly potent true actives (potency below 1 µM),

need to be filtered so that the so-called “potency bias” in the composition of their active ligand sets is reduced before

further use.

An illustration of this point can be taken from the LIT-PCBA PPARG ligand set (27 true actives and 5211 true inactives)

and the corresponding full PubChem BioAssay data (AID 743094; 78 true actives and 8532 true inactives) comprising

small molecules that were tested for an agonistic activity on the peroxisome proliferator-activated receptor gamma

(PPARg) signaling pathway . The number of true actives with high potency (EC  < 1 µM) in the complete PubChem

data is 19, nearly three times higher than that of the pruned LIT-PCBA ligand set (n = 7). Upon carrying out a 2D similarity

search with Pipeline Pilot using ECFP4 fingerprints and ten structurally diverse crystallographic PPARg agonists randomly

chosen from 138 available structures on the Protein Data Bank as templates, it was observed that, as expected, the

screening protocol managed to retrieve more highly potent true actives from the full data set than from the filtered ligand

set in 70% of the cases (Figure 3). Moreover, the “max-pooling” approach, when applied to the complete PubChem data,
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selected seven highly potent actives among the top 1% ranked molecules, seven times higher than the amount obtained

from LIT-PCBA. Among them, four even had potency values below 0.1 µM. The same screening method, on the other

hand, failed to retrieve any true actives with EC  < 0.1 µM from the pruned PPARG data. The screening performance

observed on the full ligand set was, as a result, better than that obtained after ligand-filtering, as the EF1% value was

nearly twice higher than that received with LIT-PCBA ligands. This reconfirms that in silico screening procedures tend to

recognize molecules with high potency towards a protein target, and the presence of too many highly potent ligands in the

data likely leads to a better screening performance. It is therefore recommended that one should filter the ensemble of

PubChem BioAssay ligands to ensure that there are not too many true actives with high potency that remain, in order to

avoid possible “potency bias” in the data set and the subsequent overestimation of in silico methods’ discriminatory power.

Figure 3. The number of highly potent true actives (EC  < 1 µM) retrieved among the top 1% ranked molecules by a 2D

ECFP4 fingerprint similarity search from the full PubChem BioAssay data and the corresponding LIT-PCBA PPARG ligand

set after ligand-filtering. Ten known crystallographic PPARg agonists were randomly chosen as templates from 138

available structures on the Protein Data Bank.

6. Processing Input Structures Prior to Virtual Screening

PubChem BioAssay ligands, as deposited on the database, can be downloaded either as SMILES strings  or in 2D

SDF (spatial data file) format  and are therefore, in general, not yet ready to be directly employed as the input for most

in silico screening protocols (except for 1D or 2D ligand-based approaches). A rigorous ligand-processing procedure is

thus necessary to afford ready-to-use structures for virtual screening. This process concerns a wide range of aspects

inherent in the three-dimensional structural formula of a molecule, including atomic coordinates in the 3D space, a formal

charge assigned on each atom, the presence of different protonation states and tautomeric shifts that slightly alter the

structure, and the representation of undefined stereocenters or flexible rings, as well as the existence of multiple

conformations and/or configurations . Various studies have concluded that database-processing has indeed an impact

on the screening performance; some processing stages are even indispensable to certain programs .

Kellenberger et al. (2004) , Perola and Charifson (2004) , and Cummings et al. (2007)  pointed out that the initial

conformation and orientation in the 3D space of a molecule, which are determined based on details featured in the original

SMILES string, may significantly affect the final enrichment output by a docking program. The performances of structure-

based screening methods whose scoring functions rely on ligand-receptor interactions  may be sensitive to a

change in the explicit hydrogen assignment or protonation states, as the positions of hydrogen-bonding groups and

proton-carrying atoms are crucial to properly detecting intermolecular hydrogen bonds and ionic interactions, respectively

. While a generation of correct multiple conformers for a molecule is not imperative when it comes to carrying out

docking with GOLD  or Surflex-Dock , this step has, in fact, a pivotal role in the 3D shape similarity search using

ROCS (OpenEye) . The examples mentioned above denote that good in silico screening outcomes do require the

careful treatment of input ligand sets, and a thorough investigation of different data-processing procedures with commonly

used programs (e.g., Protoss , Corina , MOE , Sybyl , and Daylight ) is thus recommended. If it is possible

(if the data size is not too large), one should check each output structure by hand to ensure that the assigned atom types,

bond types, stereochemical properties, and protonation states are correct before further use. This also applies to the

protein structure preparation prior to screening, as structural features of the protein target, especially those of the binding

site, are of indisputable importance to the structure-based virtual screening performance.
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7. Conclusions

Retrieving experimental PubChem BioAssay data to construct novel data sets for virtual screening evaluations helps

avoid assuming false negatives among inactive ligands, which is a problem inherent in artificially developed data

collections. However, there remain several issues regarding assay selection, false active molecules, chemical bias, and

potency bias, as well as data curation, which are worth noticing prior to employing PubChem input for database-designing

purposes. To the best of our knowledge, there have been several publicly available data sets that were constructed from

the data deposited on this repository, but the quantity is not yet considerable, and there still exist some limitations in the

design of these data collections. More efforts in this regard are recommended, with the points raised in this manuscript

taken into account, in order to offer more realistic data sets suitable for validating both ligand-based and structure-based

in silico screening procedures in the future. Of course, the herein proposed good practices should also be applied to

proprietary bioactivity data.
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