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Trifluoroacetic acid (TFA) is a known and persistent pollutant in the environment. Although several direct anthropogenic

sources exist, production from the atmospheric degradation of fluorocarbons such as some hydrofluorocarbons (HFCs)

has been a known source for some time. The current transition from HFCs to HFOs (hydrofluoroolefins) is beneficial from

a global warming viewpoint because HFOs are much shorter-lived and pose a much smaller threat in terms of warming,

but the fraction of HFOs converted into TFA is higher than seen for the corresponding HFCs and the region in which TFA

is produced is close to the source. Therefore, it is timely to review the role of TFA in the Earth’s environment.
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1. Introduction

Trifluoroacetic acid (TFA, CF COOH) is the shortest-chain species of perfluorinated carboxylic acid (PFCA) and the

broader family of perfluorinated carboxylates. It is one of thousands of compounds categorized as a per- and

polyfluoroalkyl substance (PFAS). PFCAs include all substances that have a carboxylic group and at least one

perfluoroalkyl moiety, represented by C F  (where n ≥ 1) . Many long-chain PFASs have been found to potentially

cause adverse effects on human and animal health in several in vitro and in vivo studies , to be ubiquitous

and persistent in the environment, and to bio-magnify along food chains . Over 9000 PFASs have been

identified to date and many face regulations that restrict their use because of their toxicity to humans and animals 

. In view of these regulations, studies have recently shifted their focus towards shorter-chain PFASs, which are

set to replace those long-chain versions most used . In fact, many of the short-chain PFASs that are replacing more

traditional long-chain PFASs are already beginning to see widespread environmental occurrence and may present similar

challenges .

Unlike many other PFASs, which are non-polar and largely insoluble in water, short-chain PFASs such as TFA are highly

mobile in the environment and accumulate in environmental aqueous phases due to their high solubility . Current

research suggests that most short-chain PFASs, including TFA, do not bioaccumulate in food chains and are rapidly

excreted from humans, although some reports state that TFA has the potential to bioaccumulate in plant material . A

2012 study by Russell et al. , sponsored by DuPont, collected measurement data for TFA in aquatic systems across the

world and then carried out a detailed modelling analysis of TFA levels in aquatic systems across the USA. Comparing

measured and modelled data with ecotoxicity data for freshwater algae, marine algae, aquatic plants, crustacea, and fish,

they concluded that, even with rising levels of TFA predicted from the use of HFOs, aquatic life would be ‘unaffected’ by

these levels of TFA . Most tests on microorganisms have found that high TFA concentrations cause no harm, although

one species of algae did show inhibited growth when exposed to extremely high concentrations . Biological and

medical research is encouraging in its unanimous findings that TFA does not bioaccumulate and exhibits low-to-moderate

toxicity in a range of organisms, even in instances of very high exposure . Furthermore, anthropogenically generated

TFA is not expected to contribute significantly to acid rain or further terrestrial acidification . But caution must be taken

not to underestimate the impacts of TFA as its anthropogenic sources increase.

Even in the absence of evidence that TFA presents a significant risk to humans or the environment, its persistence due to

its environmental stability , combined with constant or increasing emissions, will likely result in significant

accumulation in the environment. TFA contamination would then be widespread, long-lasting, and difficult to remove; this

would present a huge challenge if future research were to discover any detrimental effects of TFA. Indeed, TFA is already

being observed in significant and increasing quantities in surface water, rain, fog, sewage treatment plants, snow, the

atmosphere, and sediments . TFA rapidly dissociates into its deprotonated form,

trifluoroacetate, in an aquatic environment, particularly in aqueous phases . Therefore, in the context of environmental
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contamination, TFA salts are the most important compounds to consider. As a result, TFA and subsequent trifluoroacetate

contamination have been considered in a range of international regulatory assessments conducted by the United Nations

Environmental Program (UNEP) since 1998 . Depending on their ecological or toxicological properties, persistent

substances can pose a threat to the environment as they are irrecoverable and lead to environmental pollution lasting

decades to centuries, and eventually longer.

2. Physicochemical Properties

TFA (CAS: 76-05-1, MW = 114.02 g mol ) is a colorless, volatile liquid with a distinctive odor and a density of about 1.49

g cm  at 25 °C. It has a melting point of approximately −15.4 °C and a boiling point between 72 and 74 °C . It is

soluble in water and various organic solvents such as methanol, ethanol, acetone, and chloroform . The solubility of

TFA in water has been shown to decrease with decreasing pH, as would be expected for an acidic species . The

physicochemical properties of TFA have been listed in Table 1.

Table 1. Physicochemical properties of TFA.

Property Value

Boiling point 72–74 °C 

Vapour pressure 11–13 kPa 

pK 0.2–0.5 

Density 1.49 g cm  (at 25 °C) 

Melting point −15.4 °C 

Air–water partition coefficient 4.75 × 10  

TFA is strongly acidic due to the inductive effect of the highly electronegative fluorine atoms, which draw electron density

away from the carboxylate group and stabilize the anion. Similarly, the resonance of the C-F bond stabilizes the anion as

electron density is distributed more evenly. The acid dissociation constant of TFA, the pK , is contested in the literature,

but is generally accepted to be between 0.2 and 0.5 . This value is over 34,000 times more acidic than

acetic acid. As a result, TFA is highly soluble in water. This rapid dissociation in aqueous solutions produces the TFA

anion, known as trifluoroacetate, Figure 1. Environmentally, this means that TFA is expected to partition entirely into

aqueous phases.

Figure 1. The equilibrium between trifluoroacetic acid and its conjugate base.

The trifluoroacetate anion persists in soil and environmental aqueous phases due to the high chemical and biological

stability of the C-F bond . TFA and its salts are highly soluble. As such, they are found in rain, fog, and water bodies,

with large reservoirs present in the ocean. TFA has no known degradation pathways in environmental aqueous phases

.

Henry’s Law describes the proportionality between the amount of dissolved gas in a liquid and the partial pressure above

said liquid; this is a metric commonly used in atmospheric chemistry. The Henry’s Law constant of TFA was originally

reported to be (9 ± 2) × 10  mol kg  atm  at 298 K . More recently, Kutsuna et al.  proposed a Henry’s law constant

0.63 times smaller than that of Bowden et al.  when assuming pK  = 0.47, and equal to that determined by Bowden et

al.  when assuming pK  = 0.2 . The uncertainty in the pK  of TFA, arising as a result of significant variability in values

reported depending on the measurement technique used, is suggested to be the main cause of discrepancies between
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calculated Henry’s Law constants . Additionally, the solvation energy used is crucial in the calculation of pK  and

reported values for this property vary significantly .

The behavior of TFA with respect to gas-to-aerosol partitioning around 298 K is likely to be similar to that discussed by

Bowden et al. . These authors reported that TFA in the atmosphere will partition entirely into fog and cloud water, but

that partitioning into smaller amounts of liquid water, e.g., aerosol, is more complex. Here, TFA may partition into the liquid

phase in alkaline aerosol, but less so as the aerosol becomes more acidic, and this idea has support in the wider literature

. Interestingly, Kazil et al. suggested that, upon cloud evaporation, dissolved TFA is released into the gas phase

. While the participation of TFA in aerosol formation and its ability to partition into existing aerosols is complicated, with

dependencies on pH, temperature, and aerosol composition , research supports the contribution of TFA to aerosol

formation . However, a recent study demonstrated that quantifying the gas-particle-phase partitioning of TFA is

particularly sensitive to predicted physical properties under atmospherically relevant conditions .

Using previous global model integrations as a basis for research  (see Supplementary Materials for more details about

the integration carried out) and utilizing the global 3D chemical transport model STOCHEM-CRI, integrations have been

carried out to assess the sensitivity of the global TFA burden to the choice of Henry’s Law constant. Specifically, the TFA

Henry’s Law constant presented in Kutsana et al.  5.7 × 10  mol m  Pa  has been used to determine the upper limits

for dynamic and convective scavenging coefficients (2.2 cm  and 4.3 cm , respectively) that represent wet deposition

. The model used has been described elsewhere, and previously published work provides a STOCHEM-base scenario

(which involves HFO-CI-HETFA, using dynamic and convective scavenging coefficients of 1.9 cm  and 3.8 cm  derived

from the average of the Henry’s Law constants reported by Sander et al. ) for comparison .

The updated simulation with altered scavenging coefficients, referred to as STOCHEM-USC, shows a small increase in

the wet deposition flux of TFA by ~0.5% compared to the base scenario, with a corresponding decrease in TFA global

burden of ~4.5%. Figure 2 depicts the absolute and percentage variations between the STOCHEM-base and STOCHEM-

USC simulations. While a small shift is seen globally, the most significant absolute changes are found in a small section of

the upper latitudes.

Figure 2. Surface distribution plot depicting the (a) absolute and (b) percentage changes in. TFA concentrations from

STOCHEM-base to STOCHEM-USC simulation.

Areas of reduced atmospheric TFA concentrations represent areas of greater deposition and therefore higher

environmental contamination.

Wet deposition is the dominant loss process for atmospheric TFA (being responsible for approximately 80% of total

atmospheric TFA loss according to results published previously) . Therefore, it is also the primary route to TFA

environmental contamination. Given its high solubility, major concerns with TFA contamination center around

environmental aqueous phases, e.g., rivers, lakes, and surface waters. As a result of pervasive TFA contamination, there

have been some attempts to quantify the toxicity of TFA and its salts, particularly for species whose habitats are especially

impacted.

3. Toxicity

The accumulation of TFA, or rather its deprotonated form trifluoroacetate, in environmental aqueous phases is well

established; as a result, it is becoming increasingly important to consider the degree of its potential toxicity. To date, the

toxicological and ecotoxicological properties of short-chain PFASs, including TFA, have arguably been only sparsely

investigated .
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Given that TFA is likely to partition in the environment into its deprotonated form, toxicity assessments are generally

conducted with the anion, trifluoroacetate. Overall, the reported toxicity is low, with only one aquatic alga presenting a

concerning sensitivity to TFA . More generally, the resistance of aquatic plants to the effects of TFA contamination is

demonstrated in several reports , with Berends et al. reporting a ‘safe’ TFA level of 0.10 mg L  for aquatic life .

While aquatic plant species are expected to be exposed to elevated TFA concentrations given its accumulation in water,

terrestrial plants associated with these same water systems may also experience significant exposure . For

example, Zhang et al. reported the efficient absorption and uptake of TFA by wheat roots, with no tendency to reach a

steady state . Additionally, a number of studies reported that direct uptake from the atmosphere can contribute to high

levels of TFA in terrestrial plant leaves . Some terrestrial plants have been reported to bioaccumulate TFA ,

with bioconcentration factors reported to span from 4.9 to 1439 . As a result, the toxicity they experience may

be higher.

The unreactive nature of TFA in the environment appears to translate into an inertness in organisms, thereby limiting its

toxic effects . TFA has been detected in a wide range of organisms , but a primary concern

relates to its potential toxicity in humans and other mammals. A full review of the question of mammalian toxicity can be

found in Dekant et al. , but can be summarized with the following: at the time of writing, the potential of TFA to induce

toxicity in living organisms is considered to be very low. Additionally, TFA is reported to be easily excreted by mammals

and so is unlikely to bioaccumulate . Despite this, some bioaccumulation of TFA has been reported. For example,

Lan et al. demonstrated the ability of TFA to bioaccumulate in a range of organisms and suggested the use of locusts as a

biomonitoring tool for ecological risk assessment .

Additionally, a recent study reported a significant detection frequency of TFA (>90%) in the serum of 252 subjects in China

. The authors obtained a median concentration of 8.46 ng mL  across subjects and saw that TFA concentrations were

correlated with age, which could suggest accumulation. However, another report suggested that the TFA concentrations

measured by Duan et al.  might result from its metabolic generation from longer-chain PFASs, or from elevated local

exposure . Both the detection of metabolically generated TFA in mammals and elevated TFA exposure from certain

occupational sources have been reported . If this is the case, concentrations reported by Duan et al.  might not

be representative of the general population. On the other hand, Zheng et al.  also detected TFA in human serum that

was in good agreement with the values reported by Duan et al. .

Kim et al. have recently reported what they believe to be the first study detecting TFA in urine samples taken from the

general population . Later, Zheng et al.  reported the detection of TFA in 31% of urine samples taken, with some of

the samples showing high concentrations. However, it has also been suggested that urine may not be a suitable matrix for

long-term screening . Overall, there is a clear need for development of a quantitative biomonitoring strategy for

emerging contaminants such as TFA and further studies are urgently required.

Much of the research on potential toxicity of TFA contamination has been conducted via modelling studies. Russell et al.

 evaluated potential aquatic risk related to TFA accumulation in several modelling assessments, and predicted that after

50 years of precursor emissions, trifluoroacetate concentrations would reach 1–15 mg L  over most of the continental

United States. Such values remain well below the nominal ecotoxicological endpoint . They also modelled a ‘worst-

case’ scenario of 50 years of continuous upper-bound emissions with no TFA loss in low-rainfall regions; in this instance,

concentrations range between 50 and 200 mg L , resulting in reduced risk quotients of 5–20 . This was conducted

using toxicological data from Berends et al.  and Hanson et al. .

Overall, Russell et al. reported that it is unlikely that increased TFA contamination will impair aquatic systems given the

relative insensitivity of relevant organisms to TFA . Similar results emerged from additional studies relating to rainwater

and surface waters ; in all examples, modelled TFA proved to be below the ‘no observed effect concentration’

reported by Berends et al. .
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