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Peripheral membrane proteins are required for signal propagation upon ligand-induced receptor activation at the plasma

membrane. The translocation of this amphitropic peripheral proteins from or to the plasma membrane enables signal

cascade propagation into the cells. This translocation greatly depends on the membrane’s lipid composition and,

consequently, regulation of the lipid bilayer emerges as a novel therapeutic strategy. Indeed, relevant changes in

membrane lipids can induce massive translocation of peripheral signaling proteins from or to the plasma membrane,

which controls how cells behave. We called these changes “lipid switches”, as they alter the cell’s status (e.g.,

proliferation, differentiation, death, etc.) in response to the modulation of membrane lipids. This discovery enables

therapeutic interventions focused on modifying the bilayer’s lipids, an approach known as membrane-lipid therapy (MLT)

or melitherapy.
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1. Introduction 

Amphitropic membrane proteins are required for signal propagation upon ligand-induced receptor activation at the plasma

membrane. These proteins are only activated by ligand-receptor complexes when they both come into physical contact.

The interaction between membrane receptors and the amphitropic proteins may not only depend on the expression of

these proteins but also on the presence of the peripheral proteins in the vicinity of the membrane receptor, which may be

controlled by membrane lipids . Therefore, changes in the membrane lipid composition can induce important changes

in cell physiology that affect proliferation, differentiation, and/or cell death . These interactions and the signals they

produce are responsible for the pathophysiological status of the cell, which may be influenced by external cues, genetic

alterations, lipid storage disorders, etc. . Recent studies have shown that the type and levels of peripheral amphitropic

signaling proteins in membranes or aqueous compartments depends on both the membrane’s lipid composition, and the

protein’s amino acid sequence and post-translational lipid modifications . In this sense, alterations in the balance of

peripheral signaling proteins at membranes and in the cytosol have been associated with a variety of pathologies . The

regulation of membrane lipids controls the type and abundance of the proteins in membranes, an approach that can be

used to treat several conditions, including cancer, Alzheimer’s disease (AD), cardiovascular diseases (CVDs),

inflammation, etc. .

2. Influence of Membrane Lipid Structure and Composition on Protein-
Lipid Interactions

This entry aims to review the interaction of amphitropic signaling proteins with membrane structures. This type of

interaction deserves further attention because: (i) the  plasma membrane is a critical hub for signaling proteins; (ii) cells

can regulate their lipid composition according to a range of pathophysiological situations; (iii) membrane lipids organize

into different microdomains rich in specific lipid species, which attract different types of proteins; and (iv) proteins that

prefer certain types of lipid structures can drive productive interactions involving the reception and propagation of cell

signals in certain types of microdomains . In this context, the ability of membranes to generate microdomains

is due to the non-homogeneous mixing of membrane lipids . One example of this heterogenous lipid mixture is the

transbilayer lipid asymmetry. Higher levels of sphingomyelin (SM) and phosphatidylcholine (PC) have been found in the

outer plasma membrane leaflet, whereas phosphatidylethanolamine (PE) and phosphatidylserine (PS) are more abundant

in the inner leaflet. This asymmetry has a relevant impact on the biophysical properties of the membrane and the protein–

lipid interactions . Indeed, the number of peripheral proteins bound to the inner leaflet is higher than that bound to the

outer leaflet . A variety of microdomains have been described in which either lamellar-prone or non-lamellar-prone lipids

organize into different ordered or disordered lipid platforms . These membrane regions with varying size can be

distinguished from their adjacent microdomains in terms of their lipid and protein composition, bilayer thickness, lateral

surface pressure, acyl chain mobility, membrane morphology, etc.
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In general, the formation of membrane microdomains with specific lipids favors the presence of certain peripheral

proteins, while hindering the interaction of other proteins. For example, microdomains with a high proportion of hexagonal

(H ) phase-prone lipids, such as PE or diacylglycerol (DAG), are critical in the recruitment of peripheral amphitropic

signaling proteins and thus, for cell growth and differentiation . Indeed, the interaction of peripheral membrane

proteins, such as G proteins and Protein Kinase C (PKC), with HII membrane structures was first described some years

ago . In this context, one of the mechanisms of action by which anthracyclines exert their antitumor action was through

the inhibition of HII-phase propensity and the subsequent mislocalization of these signaling proteins. This phenomenon

explained why anthracyclines could kill cancer cells solely by interacting with the plasma membrane but not entering the

cells . Subsequently, important modifications of the plasma membrane’s lipid composition by anthracyclines was seen to

be relevant to their mechanism of action .

One example of membrane microdomain in cells are caveolae (“little caves”) which form spatio-temporal platforms where

Endothelial Growth Factor Receptor (EGFR), Ras, and Raf1 meet to propagate signals promoting cell growth . Similarly,

in the case of G proteins, Liquid-ordered (Lo) microdomains (e.g., lipid rafts) are preferred by Gαi1 proteins, whereas

Liquid-disordered (Ld) microdomains bind with high affinity to Gαβ and Gαβγ proteins . In fact, Gαβ heterodimer was

seen to drive the interaction of Gαβγ heterotrimers in PE-enriched Ld membrane microdomains. Thus, one of the roles of

Gαβ dimers is to bring Gα monomers into contact with G-Protein-Coupled Receptors (GPCRs) . Another well-known

protein–membrane interaction is the Ca -mediated fusion of synaptic vesicles to membranes in order to release

neurotransmitters into the synaptic cleft. In this process, Ca  binding to the C2 domain of synaptotagmin mediates

vesicle exocytosis, assisting fusion to the plasma membrane via its interaction with a SNARE/complexin complex in

presynaptic terminals . In general, non-lamellar-prone membrane microdomains rich in PE or DAG are necessary for

interactions with the C2 domain in certain proteins. Moreover, they are necessary for membrane fusion and fission

phenomena, such as exocytosis and endocytosis, which require the formation of inverted curvature non-lamellar (HII)

intermediates .

In summary, the localization and activity of important peripheral signaling proteins is very sensitive to changes in

membrane structure . Therefore, natural or synthetic molecules that regulate lipid polymorphism in vitro and membrane

microdomains in vivo  can regulate the localization and activity of peripheral membrane proteins, and thereby modulate

cell signaling. In this context, membrane microdomains act as sites where signaling partners exert productive interactions.

As such, signaling proteins can interact with downstream signal transducers, sharing their affinity for certain membrane

lipids or lipid structures. Lamellar-prone Lo membrane microdomains (e.g., lipid rafts) contain specific lipids that define

their membrane lipid structure and that are involved in selecting the proteins that bind to them . The ability of lipids to

organize into different structures (lipid mesomorphism) depends on the lipid composition and external physical factors,

such as temperature. The mosaic of lipid structures that defines different membrane microdomains facilitates a number of

different protein–lipid interactions .

3. Altered Protein-Lipid Interactions in Human Disease and Therapy

The activity of many amphitropic proteins depends on their membrane interactions, which are modulated by the lipid

composition of the membrane. The activity of several important signaling proteins is regulated by protein–lipid

interactions, including Src kinase, RAS-guanine nucleotide exchange factor, cytidylyltransferase, PKC, phospholipase C,

vinculin and DnaA protein. Therefore, membrane lipids imbalance can have an important influence on several diseases,

as recently reviewed  (Figure 1).

For example, cystic fibrosis causes lipid imbalances that affect surfactant function, producing a negative effect on

breathing . In mouse models of cystic fibrosis, a similar lipid imbalance was found in affected organs, although

administration of docosahexaenoic acid (DHA) normalized both these lipid changes and the animal’s health status . In

brain injury, a significant increase in SM, PE, PC and the derivatives lysoPE and lysoPC have been described at acute

and/or sub-acute time points . In diabetes, DAG levels are chronically elevated in various tissues, such as the retina,

aorta, heart and renal glomeruli, liver and skeletal muscles, leading to abnormal PKC activation . PKC membrane

recruitment is accompanied by a conformational rearrangement that relieves auto-inhibitory interactions, enabling PKC to

bind to membranes through its C1 and/or C2 domains, and allowing it to phosphorylate its targets . On the other

hand, sphingolipids appear to be critical in the prognosis of anaplastic lymphoma. Thus, Anaplastic Lymphoma Kinase

(ALK)+ lymphomas may express an ALK fusion protein involved in cancer cell survival, or the Cbp/PAG adaptor protein

and the Lyn kinase signalosome (a protein complex involved on signal propagation) that recruits other transcription factors

and signaling enzymes. Lyn is not particularly active in ALK+ lymphoma membranes that contain sphingolipid-rich

domains (i.e.: raft-like membrane microdomains) which impairs the productive signaling of the Lyn-Cbp/PAG

signalosome . Therefore, the plasma membrane appears to act as a switch, and alterations in its composition cause
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dramatic translocations of proteins to or from the plasma membrane. Such signals appear to be especially relevant in the

context of cell proliferation. Thus, either the increase in cell proliferation caused by tumor alterations or decreased

proliferation related to neurodegeneration (e.g., AD or Parkinson’s disease (PD)) have been related to membrane lipid

modifications . 

Figure 1. Lipid imbalances and human pathologies. Alterations to the lipidome in a variety of conditions. The triangle

indicates increased levels or pathway activity: PL, phospholipid; PtdIns(3,4,5)P3, phosphatidylinositol 3,4,5-trisphosphate;

PE, phosphatidylethanolamine; SM, sphingomyelin; OLR1, oxidized low-density lipoprotein receptor 1; GLRX,

glutaredoxin; FASN, FA synthase; ACC, acetyl-CoA carboxylase; INSIG1, insulin induced gene 1; SREBP1, sterol

regulatory element-binding protein 1; LSD, lysosomal disorder; SL, sphingolipid; Chol, cholesterol; FA, fatty acid; PS,

phosphatidylserine (Adapted from [32]).

3.1. Protein-Lipid Interactions in Cancer

The RAS family of amphitropic proteins is related to cell proliferation and mutated (especially K-RAS) in 95% of

pancreatic, 45% of colorectal, and 35% of lung cancers . Guanine nucleotide exchange factors (GEFs) and GTPase

activating proteins (GAPs) control RAS activation by inducing GDP exchange for GTP or GTP hydrolysis to GDP,

respectively. To regulate RAS activation, GEFs and GAPs are recruited to plasma membrane microdomains close to RAS.

The activity of K-RAS has been directly related to membrane regions rich in PS which interact with a polybasic amino acid

region in the C-terminal region of this protein . In addition, RAS activation requires palmitoylation at Golgi membranes

that drives RAS to the plasma membrane via vesicle trafficking . The presence of RAS at the plasma membrane is

necessary for its activity as a tumor promoter, which also depends on its covalent acylation. Palmitoylation is not only

important for RAS activity, it is also essential for the function of other oncogenes (e.g., EGFR).

The Wnt signaling pathway regulates a variety of cellular processes including cell proliferation. Hence, aberrant activation

of the Wnt-FZD signaling leads to tumorigenesis in many tissues , including the breast, prostate, colon, brain and

pancreas. Wnt family members undergo two types of post-translational modifications that influence their interactions with

lipid bilayers and that are essential for Wnt signaling: serine acylation and the subsequent S-palmitoylation of cysteine .

Wnt signaling involves crosstalk with other important cell signaling pathways including the Notch, Hedgehog, and EGFR

cascades  which are all of them altered to some degree in different cancers  and controlled by lipid–protein

interactions, which highlights the relevance of these interactions in cancer. Accordingly, modulation of these lipid–protein

interactions may produce potential therapeutic benefits in the treatment of cancer . This approach has been

termed MLT or melitherapy, and it has been demonstrated to combine high efficacy and safety in clinical trials (e.g.,

ClinicalTrials.gov identifiers NCT01792310 and NCT03366480).

3.2. Protein-Lipid Interactions in Neuroregeneration

Neurodegenerative diseases are a public-health issue worldwide with unmet clinical needs. Classic therapies focus on

preventing or delaying neuronal degeneration, whereas more recent interest has also focused on neuroregenerative

therapies. The finding that Neural Stem/Progenitor Cells (NSPCs) persist in adults, and the discovery of relevant

transcription factors and signaling pathways, including signaling lipids that influence NSPC behavior and of neurogenesis,

raised hope in therapies based on NSPC regulation and the potentiation of neurogenesis . In this context,

polyunsaturated fatty acids (PUFAs), like DHA (C22:6, n-3) and AA (arachidonic acid, C20:4, n-6) are abundant in the

CNS, being the brain the organ with the highest DHA levels . Studies reviewing the effect of these PUFAs on NSPC
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regulation support a role for both in neurogenesis during brain development and adulthood. Specifically, AA increases

NSPC proliferation, and it probably influences the maintenance of the NSPC pool, whereas DHA promotes neuronal

differentiation . In addition, not only do the individual levels of these two PUFAs in cell membranes play a role in

neurogenesis but also, the ratio between them is determinant as a lipid switch . In fact, due to the higher proportion of

omega-6 PUFAs in western diets, low dietary omega-6/omega-3 ratios have been widely described as beneficial on

neurodegenerative pathologies such as AD.

PUFAs can modulate lipid-raft-mediated signaling by regulating the composition of these structures . For instance,

increased levels of cell membrane PUFAs are associated with increased NSPC proliferation due to the disruption of

protein localization to lipid rafts . Membrane lipids can also regulate signaling in NSPCs through fatty acid (FA) binding

to specific receptors, such as Fatty Acid Binding Proteins (FABPs). Three members of this family are expressed in the

brain: FABP3, FABP5 and FABP7 . The protein FABP3, is related with neuritogenesis and synaptogenesis, whereas

FABPs 5 and 7 are involved in NSPC differentiation and migration . Other receptors influenced by DHA and other

PUFAs and that are involved in neurogenesis have also been described. Thus, DHA has been shown to bind (directly or

via FABPs) to Peroxisome Proliferator-Activated Receptor γ (PPARγ), a nuclear receptor that mediates the expression of

transcription factors that enhance neurogenesis . DHA also binds to GPR40 (G-protein coupled receptor 40), the

activation of which leads to neuronal differentiation of NSPCs .

PUFAs have unique biophysical properties in membranes, regulating their interactions with proteins. They favor the

occurrence of Ld membrane microdomains , which are associated with changes in protein–lipid interactions. In this

context, a decline in DHA biosynthesis correlates with cognitive impairment in AD patients  and alterations to membrane

lipids in neurons have been proposed as upstream events implicated in neurodegeneration, such as Aβ production and

tau phosphorylation . These lipid alterations might affect protein–lipid interactions that would activate the

neurodegenerative cascade, as well as modulating neuroprotection and neuroregeneration . Indeed, treatment with

the PUFA 2-hydroxydocosahexaenoic acid inhibits amyloid production, tau phosphorylation, and it induces an increase in

PUFAs and the recovery of cognitive scores in a mouse model of human AD (5XFAD mice ).

3.3. Protein-Lipid Interactions in Diabetes

Insulin resistance has been widely associated with an altered cell membrane composition, particularly in Type-2 diabetes

mellitus (T2DM). Insulin resistance is characterized by a restriction in the ability of insulin to exert its physiological

functions in tissues, leading to insulin hypersecretion by the pancreas as a compensatory mechanism to maintain glucose

homeostasis. Unfortunately, this hyperinsulinemia induced by insulin resistance contributes to pancreatic β-cell failure and

the further development of diabetes . Insulin Receptor (IR) activation and its affinity for insulin depends on the cell

membrane composition and structure. Decreased membrane fluidity caused by a high saturated FA content leads to less

IR in the plasma membrane and reduced insulin affinity. However, the presence of PUFAs (particularly omega-3 PUFAs

like DHA) increases membrane fluidity and insulin sensitivity .

In diabetic patients, DAG levels are chronically elevated in many peripheral tissues, leading to abnormal PKC activation

. Activated PKC enhances IRS (insulin receptor substrate) phosphorylation at Ser/Thr residues, which inhibits a

conformational change in IRS that is necessary for IR-mediated Tyr phosphorylation and insulin signaling via

Phosphatidylinositol 3-kinase (PI3K) . However, omega-3 PUFAs inhibit PKC to favor insulin signaling . The lipid

composition of the plasma membrane also influences glucose transport via GLUT. Indeed, epidemiological studies

indicate that dietary changes from unsaturated towards saturated lipids inhibit the insertion of GLUT4 into the plasma

membrane, thereby altering glucose uptake from the blood and insulin sensitivity . By contrast, experimental Chol

depletion increases the density of GLUT4 receptors at the plasma membrane . Interestingly, GLUT4 translocation to the

plasma membrane is, in part, controlled by activation of the IR–IRS–PI3K axis which means that an increase in

membrane fluidity (mediated by PUFA enrichment) in the presence of insulin may activate GLUT4 translocation to the

plasma membrane . Finally, GLUT4 expression is under the control of PPARγ, such that the presence of DHA in cell

membranes and an optimal omega-3 to omega-6 ratio may promote GLUT4 expression . Together, this evidence

suggests that the membrane lipid composition acts as a switch that regulates the cell’s sensitivity to insulin, whereby lipids

that promote membrane fluidity like omega-3 PUFAs potentiate the insulin response and activate the enzymatic

machinery for glucose uptake.

There is abundant evidence demonstrating the association between dietary fats and diabetes, which supports the use of

dietary fat interventions and melitherapy as therapeutic strategies in diabetic patients. Several studies have reviewed the

use of Monounsaturated Fatty Acids (MUFAs) and PUFAs in diabetes although the effect of omega-3 PUFAs in preventing

insulin resistance in animals appears to be more robust . Increases in the unsaturation index in the cell membrane, and

particularly in omega-3 PUFAs, is associated with stronger insulin sensitivity . In general, improved insulin sensitivity
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has been associated with the enrichment of omega-3 PUFAs in cell membranes, and although the exact mechanism

mediating this effect is not yet fully understood, protein–lipid interactions probably play a relevant role in the control of

glycemia . Therefore, the biophysical properties of lipid bilayers and structural membrane dynamics may play crucial

roles in diabetic patients that could influence their pathological status and its treatment.

3.4. Protein-Lipid Interactions in Cardiovascular Diseases (CVDs).

The CVDs are the leading causes of death and disability worldwide. They include heart disease, vascular diseases of the

brain and other diseases of blood vessels . The major risk factors for CVDs are raised blood pressure (hypertension),

raised blood sugar (diabetes) and raised blood cholesterol (Chol) (hyperlipidemia), together with other conditions such as

cardiac arrhythmia, congenital heart disease, rheumatic heart disease and Chagas disease (American trypanosomiasis).

Lipid molecules that alter lipid–protein interactions may have therapeutic value in CVDs. Dietary control is one of the main

tools in the prevention of CVD and in therapeutic terms . The benefits of the Mediterranean diet for CVDs have

become generally accepted and recent studies detail the usefulness of dietary supplementation strategies based on this

diet. Extra virgin olive oil or mixed nuts decrease the cases of stroke, myocardial infarction and CV mortality . There are

several molecular entities that affect lipid–protein interactions and that may underlie these benefits. The levels of specific

fatty acids increase upon olive oil consumption and this produces an increase in the MUFAs:SFA (Saturated FA) ratio.

This increase alters membrane lipid structure and membrane fluidity, favoring non-lamellar membrane structures, and

affecting the position and activity of certain proteins like G proteins and PKC . Both GPCRs and G proteins are sensitive

to the lipid environment  and the membrane-association of G proteins and PKC is significantly impaired in hypertensive

subjects. Adrenergic receptors are especially relevant for CVDs, the levels of which vary with age and they can be

targeted with ß-blockers. In particular, ß-adrenergic mediated vasorelaxation and Gαs coupling decreases with age and

thus, melitherapy seems a plausible strategy to counteract this reduction (reviewed in [80]). The levels of lipoprotein lipase

(LPL), a water-soluble enzyme responsible for hydrolyzing triglycerides in lipoproteins, and for the uptake of Chol-rich

lipoproteins and of FFAs, decrease upon olive oil supplementation. This change is mediated by microRNA-410, which

targets the 3’-untranslated region of the LPL gene .

As indicated above, hypertension is a major risk factor for CVDs which is accompanied by alterations in membrane Chol

or phospholipid content, as well as in the degree of fatty acid saturation and phospholipid distribution . Indeed,

several approaches have been developed to target these molecular alterations. For example, the MUFA 2-hydroxyoleic

acid (2OHOA) is a synthetic derivative of the oleic acid (OA), inspired by the beneficial effects on hypertension of long-

term high-dose OA supplementation . The anti-hypertensive potential of 2OHOA was shown in Sprague–Dawley (S–D)

and spontaneously hypertensive rats (SHRs) . Sustained, time-dependent decreases in blood pressure were reported

that did not affect heart rate. At the molecular level, there was more Gαs in the aorta and heart membranes of S–D rats,

and Gαq/11 and PKCα in heart membranes alone, producing increased cAMP and promoting vasodilatation. Treatment of

SHRs with 2-OHOA produced a normalization of the aortic Rho kinase, suppressing the vasoconstrictor Rho kinase

pathway seen in SHRs .  

Finally, raised blood Chol is also a major risk factor for CVDs. The contribution of altered lipid profiles to the damage

following stroke was proposed almost 25 years ago . Stroke-induced energy failure is followed by FFA release from the

plasma membrane of damaged cells, some of which expand ischemic damage (i.e. AA), while others exert a pro-survival

effect. AA is subject to the action of cyclooxygenases (COX) and lipoxygenases (LOX), converting it into proinflammatory

eicosanoids (prostaglandins, thromboxanes and leukotrienes). Accordingly, 2-hydroxy arachidonic acid (2-OAA) is a

rationally designed derivative of AA known to be a competitive inhibitor of COX-1 and COX-2, and thus, it can be used in

LPS-treated mice to decrease proinflammatory cytokines in serum (reviewed in [86]). When assessed for the treatment of

stroke using S-D rats, 2-OAA treatment produced neuroprotection . At the molecular level, 2-OAA decreased

phospholipase A2 (PLA2) in the cell membrane with a subsequent decrease in FFA release. Therefore, the use of

rationally designed lipids would seem to be a promising new stroke therapy .

3.5. Protein-Lipid interactions in Infectious Diseases

Bacterial membranes show important differences with respect to eukaryotic cell membranes , which has two relevant

implications: different types of protein–lipid interactions can be  found and these differences may allow the development of

new therapeutic strategies to treat infectious diseases, using compounds that produce specifically effect only on

prokaryotic cell membranes. Given the increased resistance of infectious microorganisms to conventional antibiotics,

alternative drugs are potentially interesting to combat infections.
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There are two examples supporting the relevance of protein–lipid interactions in infectious microorganisms, in which the

selectivity of lipid binding to membrane protein complexes has been explored . In the latter study, modeling was

performed using the major facilitator superfamily (MFS), which includes thousands of closely related secondary active and

passive solute transporters, such as multidrug efflux pumps . The MFS group includes most of the known secondary

transporters, such as transporters implicated in many human pathologies, in resistance to chemotherapeutic agents in

humans and in resistance to antibiotics in bacteria . Direct interactions between PE and the charge networks stabilize

the inward-facing conformation, facilitating substrate release into the cytosol. It was therefore speculated that

conformational regulation by specific lipid–protein interactions constitutes a widespread mechanism employed by many

transporters, such as the clinically relevant solute carrier (SLC) transporters . These studies illustrate how lipids fine

tune the structure and function of membrane proteins, through their relative abundance and the differences in their

selectivity for amino acid residues . Specifically, in infectious diseases this regulation influences both the interaction of

the pathogenic organism with the host cell and the reaction of the immunological cells involved in the response to the

pathogenic organism or condition.

4. Summary

Membrane lipid composition and strucutre play a crucial role in the interaction of peripheral membrane proteins with the

lipid bilayer, which is mediated by the binding of these signaling proteins to specific lipid species and to supramolecular

membrane structures, known as membrane microdomains. Microdomains such as caveolae, lipid rafts, liquid disordered

domains, etc., act as signal propagation platforms where signaling proteins have a higher probability of physically

interacting. These proteins also bear lipid or amino acid motifs that drive their interactions with specific lipid species or

lipid structures. Therefore, relevant changes in membrane lipids can induce translocation of peripheral proteins from or to

the plasma membrane. We have called these changes “lipid switches”, as they alter the cell’s proliferation, differentiation,

death, etc., in response to the modulation of membrane lipids. This lipid modulation enables therapeutic interventions

known as membrane-lipid therapy (MLT) or melitherapy.
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