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In agroecosystems, nitrogen is one of the major nutrients limiting plant growth. To meet the increased nitrogen

demand in agriculture, synthetic fertilizers have been used extensively in the latter part of the twentieth century,

which have led to environmental challenges such as nitrate pollution. Biological nitrogen fixation (BNF) in plants is

an essential mechanism for sustainable agricultural production and healthy ecosystem functioning. BNF by

legumes and associative, endosymbiotic, and endophytic nitrogen fixation in non-legumes play major roles in

reducing the use of synthetic nitrogen fertilizer in agriculture, increased plant nutrient content, and soil health

reclamation. 
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1. Introduction

A healthy, functioning soil ensures nutrient cycling for optimum plant growth for agricultural production . However,

agricultural productivity is often limited by available soil nutrients, especially nitrogen . Nitrogen is not present in

soil parent material despite the fact that nitrogen content in the atmosphere is highest among all the atmospheric

gases . Hence, soil nitrogen input for plant nutrition and crop productivity largely depends on organic matter

degradation, synthetic fertilizer applications, and biological nitrogen fixation (BNF) via nitrogenase enzyme activity

. This limited bio-availability of N and the escalating reliance of crop growth on N have created a colossal N-

based fertilizer industry worldwide . Nitrogenous fertilizer production currently represents a significant expense

for the efficient growth of various crops in the developed world. Synthetic N fertilizers are currently used in grain,

grass, and fruit productions (about 60% for cereals and 10% with irrigated rice production) . More than 50% of

the applied N-based fertilizer is used by the plants and the remaining can be subjected to losses like surface runoff

and leaching leading to nitrate contamination of soils and groundwater. In terms of energy efficiency, moreover,

manufacturing nitrogen-based fertilizers requires six times more energy than that needed to produce either

phosphorous or potassium-based fertilizers . Therefore, reducing dependence on nitrogenous fertilizers in

agriculture in the developed world and developing countries may lead to potential gains in an agricultural setting.

Biological nitrogen fixation (BNF) in economically important food and forage crops  has drawn attention to

achieve sustainable agricultural goals in both hemispheres of the world . In livestock production systems in the

southeastern USA, strategically planting nitrogen-fixing legumes in cattle pastures has shown to increase the

available soil nitrogen , thereby reducing the need to apply synthetic nitrogen sources. The diazotrophic

microorganisms from bacteria or archaea domains are responsible for BNF and only some prokaryotes are able to
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use atmospheric nitrogen through BNF by encoding nitrogenase, an enzyme that catalyzes the conversion of

N  gas to ammonia (NH ) . Despite the phylogenic and ecological diversity among diazotrophic bacteria

and their hosts, a synchronized interaction is always a prerequisite between the microbial entities and the host

plant to achieve a successful nitrogen fixation system. The importance of this process is enormous as it reduces

the dependence on nitrogen fertilizers for plants and thus, for agriculture overall. It has been estimated that

worldwide, biological nitrogen fixation produces roughly 200 million tons of nitrogen annually . In fact, nearly

50% of the total nitrogen in crop fields is the contribution of BNF by diazotrophic bacteria of the total biosphere

nitrogen . Moreover, fixed nitrogen can also be transferred to intercropped non-legumes in the case of mixed

cropping systems, such as the soybean–wheat system, or the next season crops in crop rotation . 

2. Biological Nitrogen Fixation (BNF)

Nitrogen fixation is a dynamic and high-energy demanding process . The pathway for the biological reduction of

inert N  into the reactive compound NH  (ammonia) under micro-aerobic conditions is as follows:

N  + 8H  + 8e  + 16Mg-ATP → 2NH  + H  + 16Mg-ADP + 16 P (1)

Free-living diazotrophs correspond to a small fraction of the plant rhizospheres ecosystem, and they belong to

alphaproteobacteria (Rhizobia,  Bradyrhizobia,  Rhodobacteria), betaproteobacteria (Burkholderia,  Nitrosospira),

gammaproteobacteria (Pseudomonas, Xanthomonas), firmicutes, and cyanobacteria . However, their presence,

function, and importance can be explained by the “black queen” hypothesis which predicts that in free-living

microbial communities, only a few “helpers” that carry the heaviest weight in terms of functions, such as high

energy-requiring nitrogen fixation, support the rest of the flora and fauna population or the “beneficiaries” that rely

on the “helpers” or the “beneficial” for nitrogen needs .

The symbiotic relationship between soil bacteria, collectively known as rhizobia (which includes the

genera Rhizobium, Bradyrhizobium, Mesorhizobium, and Sinorhizobium), and legume roots generates nodules (a

new differentiated special organ) that fix atmospheric nitrogen through the action of the nitrogenase enzyme .

BNF by plants and its bacterial associations represent an important natural system for capturing atmospheric N

and processing it into a reactive form of nitrogen through enzymatic reduction. BNF is considered an extremely

sensitive process influenced by nutrient and environmental conditions and enables a plant to supply all or part of its

requirements through interactions with endo-symbiotic, associative, and endophytic symbionts, thus offering a

competitive advantage over any non-nitrogen-fixing plants . The highly conserved nitrogenase

complex in free-living and symbiotic diazotrophs enables them to participate in various types of

associations/interactions with their host plants. BNF by plant–rhizobia symbiotic systems is mediated by

endosymbiotic interaction when plants develop root nodules; in legumes and rhizobia, gram-negative alpha

proteobacteria are the most common microbial species that associate (endo-symbiotic interaction) with legumes of

the Fabaceae (Papilionaceae) family . Actinomycetes such as the  Parasponia  species (family

Cannabaceae) and Frankia sp. that associate with a broad spectrum of actinorhizal plants are well documented in

nitrogen fixation as well . Cyanobacteria (mainly  Nostoc  sp.) have also been found to colonize different plant

organs, either intracellularly in the family Gunneraceae or extracellularly in  Azolla,  Cycadaceae, liverworts, and
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hornworts. Associative nitrogen fixation (ANF) and/or endophytic symbioses are often observed among

diazotrophs, such as Azospirillum  spp.,  Azoarcus  spp. and  Herbaspirillum, with a wide variety of plant roots

including cereals. The nitrogenase protein, as well as the associated proteins and non-proteins forming

nitrogenase enzyme, are sensitive to the presence of oxygen . For this extreme sensitivity to oxygen, obligate

anaerobes such as  Clostridium pasteurianum  are ideal candidates for nitrogen fixation; however, facultative

anaerobes such as Klebsiella oxytoca are also capable of fixing nitrogen but only when the oxygen is absent in the

system . Obligate aerobes, such as Azotobacter vinelandii can also shield nitrogenase from oxygen and perform

nitrogen fixation by consuming oxygen via cytochrome oxidases .

2.1. The Nitrogenase Protein and Nodule Formation

As mentioned earlier, a protein complex called nitrogenase (composed of enzymes with metal co-factors) makes

nitrogen fixation possible in plants. The first one is dinitrogenase and the second one is dinitrogenase reductase

. According to the active site co-factor binding metal, there exist three types of dinitrogenase in nature. (a)

Molybdenum (Mo) nitrogenase; it is most abundant and carries the most significance in the nitrogen-fixing bacterial

and archaeal niche and the alternative vanadium (V) and iron-only (Fe) nitrogenases . The molybdenum-

dependent dinitrogenase is formed by nifD and nifK gene products and dinitrogenase reductase is a homodimer of

the nifH gene product . It is well documented that molybdenum nitrogenase is produced in all diazotrophs in

nature, while some produce vanadium or iron nitrogenase in addition to Mo-nitrogenase . The rhizobium

bacteria residing in nodules fix atmospheric nitrogen gas to NH , which plants can assimilate via glutamine

synthase to form glutamine. In response, the bacteria derive plant carbohydrates, mainly as malate for food and an

energy source for nitrogen fixation. Nodules are very complex structures, containing several processes which

operate and interact at distinct levels. The process of nodule formation requires a coordinated exchange of signals

between the two symbiotic partners . Bacteria had their symbiotic genes first characterized by transposon

mutagenesis; this achieved the definition of over 50 nodulation genes (Nod and Nol) in bacteria, and about the

same number controlling nitrogen fixation; thus many nod- and fix-bacterial strains exist in many species of

rhizobia. Legume–rhizobium symbiosis starts with molecular signaling between the two partners. Early nodulation

gene cascades in legumes. Plants release signals such as flavonoids (e.g., the flavone 7,4 dihydroxyflavone and

the isoflavone genistein) which are picked up by compatible bacteria in the rhizosphere  leading to the

production of Nod factors (NF) which trigger early events in the nodulation process . This triggers the

downstream gene cascade including those involved in nucleoporin, cation channels, calcium spiking, early nodule

expression, and cytokine signaling leading to cortical and pericyclic cell divisions, and concomitant bacterial

infection. Rhizobia are entrapped by root hair curling after the Nod factor has been perceived, which results in

initiating the formation of an infection thread (a tubular structure). This infection thread facilitates the penetration of

root hair cells and adjacent cortical cells . Cell divisions in cortical and pericycle occur simultaneously resulting

in the formation of the nodule primordium. Bacterial cell division facilitates the rhizobial traveling through the

infection thread and is eventually freed into the induced nodule primordium cells . As nodules mature with

time, bacteria are enclosed within the symbiosome membrane, resultant from an inverted plasma membrane of

plant origin. In this encapsulated chamber, the bacteria experience a micro-aerobic environment (lower oxygen

concentration) and differentiate into bacteroids, fixing diffused nitrogen gas using their nitrogenase enzyme
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complex . Depending on whether or not the meristem remains active for the life of the nodule, two main types

of nodules are formed on the various legume species, (i) indeterminate or (ii) determinate. In the case of

determinate nodules, nodular meristematic activity is terminated early and is usually initiated sub-epidermally in the

outer cortex, thus giving rise to spherical nodules . In indeterminate nodules, the inner cortex undergoes cell

division (anticlinally) followed by periclinal divisions in the pericycle. Here, cylindrical nodules are formed due to

more persistent meristems .

2.2. Genes Encoding Nitrogenase Enzyme

The understanding of the genetic basis of this relationship is of paramount importance and essential for the

optimization of nitrogen acquisition rates in legumes themselves. Bacterial nif genes are well known to encode the

components of the nitrogenase enzyme complex. nifH, nifD, and nifK genes encode the structural subunit of di-

nitrogenase reductase and the 2 subunits of di-nitrogenase, respectively. Many rhizobial genes have been fully

sequenced, for instance,  Mesorhizobium loti,  Sinorhizobium meliloti, and  Bradyrhizobium japonicum  .

These proteins have similar sequences and common structures and functions in many diazotrophs, for

instance,  Azotobacter vinelandii,  Herbaspirillum seropedicae,  Pseudomonas stutzeri, and  Bradyrhizobium

japonicum  . Furthermore, genetic and biochemical analyses revealed that many additional nif  genes,

including nifE, nifN, nifX, nifQ, nif W, nifV, nifA, nifB, nifZ, and nifS, play roles in the regulation of nif genes and

maturation processes of electron transport and FeMo-cofactor biosynthesis and assembly . In addition,

the fixABCX genes first identified in Rhizobium meliloti   and subsequently in other diazotrophs were reported

to encode a membrane complex participating in electron transfer to nitrogenase . The degree of specificity

between legumes and rhizobia varies. The Nod factors produced by Rhizobium etli  and Rhizobium loti  produce

identical Nod factors; however, they have distinct host ranges (Phaseolus spp. and Lotus spp., respectively) .

Moreover, different rhizobia nodulating the same plant may excrete completely different Nod factors. For

instance, Rhizobium tropici and R. etli produce different Nod factors (sulfated and acetylfucosylated, respectively),

but both are known to nodulate  Proteus vulgaris  . More examples include  Bradyrhizobium

elkanii  and  Bradyrhizobium japonicum, which have a number of mutual hosts, but their Nod factors differ

considerably .

2.3. Marker-Assisted Selection of Biological Nitrogen-Fixing Plants

Several studies have identified QTL associated with traits related to biological N fixation (Table 1  ). The

QTL markers can be used in marker-assisted selection for breeding plants with better nitrogen fixation attributes. A

QTL for the total ureides (acyl derivatives of urea) was identified on chromosome 17 in soybean which explained

13.26% phenotypic variation . Li and the team  cloned a candidate gene associated with a major QTL in

soybean for increasing nodule size and named it INCREASING NODULE SIZE1 (GmINS1). The overexpression of

GmINS1 increased the N content and the biomass of the soybean plant due to an increase in number, biomass,

the abundance of infection cells, and nitrogenase activity of large nodules . The result was the opposite when

GmINS1 was suppressed by RNA interference .

Table 1. Major genomic loci detected for BNF in different legume species .
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