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Additive manufacturing (AM, also known as 3D printing) is an advanced manufacturing technique that has enabled
progress in the design and fabrication of customised or patient-specific (meta-)biomaterials and biomedical devices
(e.g., implants, prosthetics, and orthotics) with complex internal microstructures and tuneable properties. Several
design guidelines have been proposed for creating porous lattice structures, particularly for biomedical

applications.

additive manufacturing biomaterials metals 3d printing

| 1. Introduction

Additive manufacturing (AM, also known as 3D printing) technologies are among the most feasible advanced
manufacturing options to create complex structures for use in technology-driven industries, such as healthcare 11,
automotive (28] and aerospace 4. AM, being different from other manufacturing methods, such as subtractive and
formative methods, results in less scrap and waste of materials and allows for lightweight complex structures, often
hollow or porous, thus requiring less material input and energy input during their fabrication and service. Seven
categories of AM, namely, binder jetting, directed energy deposition, material extrusion, material jetting, powder
bed fusion, sheet lamination, and vat photopolymerisation, have been recognised and defined in the ISO/ASTM
52900 standard 2.

Not all AM processes in the ASTM classification are equally developed and used for medical devices and
biomaterial fabrication (€. Here is a summary of the capabilities, limitations, and pros and cons of conventional
processes and associated materials (e.g., metals and their alloys, polymers, and ceramics) used in the fabrication
of biomaterials (Table 1) in terms of printing speed, part sizes, degree of anisotropy, achievable resolution, the
possibility of embedding cells in feedstock materials, the need for support, the need for post-processing, and costs.
The success of each of these 3D printing processes relies, to a large extent, on the employment of optimised or
suitable process parameters within the capabilities of the available AM machines that are associated with specific

AM processes.

Table 1. Summary of the different AM techniques, useable materials, their pros and cons, and their biomedical

applications.
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internal architectures of pores at a microscopic level and to produce organic geometries with complex internal
architectures and passages B This is one of the most important merits of AM over conventional fabrication
technologies, such as casting and moulding 24, in which the designer has virtually no control over the precise

details of the internal geometries of porous materials.

| 2. Geometrical Design of Lattices
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While AM offers almost unlimited possibilities to part designers, there are several constraints in the structural
design of lattices that limit the theoretical ability of AM to fabricate porous structures with highly complex
geometries. Several inherent limitations related to the processability of the designed part also exist in AM methods,
which has led to the introduction of several guidelines to manage these constraints and limitations 3. Some of
these constraints are recognised as minimum feature size (e.g., wall thickness, edges, and corners), the orientation

of lattice structures on the build plate for self-overhanging, support materials, and support removal 141,

As an example, in powder bed fusion (PBF) techniques, overhanging structures, which are defined as parts of
lattice structures that are not self-supported, can result in undesirable defects in lattice structures 13126l There are
no underlying layers or solidified sections to support these overhanging parts during their fabrication, which is why
the choice of orientation during building is critically important. The overhanging structure also depends on the
critical fabrication angle (12, Sacrificial support materials, therefore, need to be used for overhanging structures
below a specific fabrication angle. These sacrificial support materials need to be removed (e.g., in PBF techniques)
or washed away (e.g., in vat photopolymerisation techniques) from the structures during post-processing, which
may damage additively manufactured parts. To compensate for that and achieve optimum results with fewer
support materials, the parts need to be designed with self-supported struts in lattice structures. Restricted build
envelopes and the application of a single material in the manufacturing process of metallic materials can also be
specified as other limitations, although achievable sizes have been considerably increased in recent years, and
combinations of materials have become possible, e.g., by means of a recoater. In some cases, the limitation of a
combination of materials can be resolved by alloying elemental metallic powders 4. This limitation can also be

overcome by using multiple nozzles in extrusion-based AM techniques.

Creating the geometrical design of a lattice structure is the first step in designing AM lattices. Lattice structures can
be broadly classified as open-cell or closed-cell cellular structures. Because it is not possible to remove the
residual material (e.g., entrapped powder particles in the case of PBF processes or supports in vat
photopolymerisation processes) in closed-cell lattices, open-cell lattices are mostly chosen for fabrication using AM
techniques. There are various proposed design principles regarding the geometrical arrangement of lattice
structures (an overview is provided in Table 2). In some cases, we may combine two or more of these design

methods to obtain a more desirable lattice structure.

Table 2. Summary of the different approaches for the geometrical design of lattices.

Design Geometry/Mechanism . Caution in 3D
Strategy UL Example AU DT Printability
Library- Ordered unit « Beam-based: FCC, + Use of « Design of self-
S s BCC, octet-truss, (non-)commercial overhanging
and diamond CAD tools structure and

sacrificial support
o Sheet-based: TPMS, o Simplicity in

gyroid, diamond, and geometrical design

https://encyclopedia.pub/entry/26449 4/22



Geometrical Design of Lattices in Additive Manufacturing | Encyclopedia.pub

Design
Strategy

Method

Disordered unit
cells

Geometry/Mechanism

Example

primitive

Functionally graded

Control of the level of

connectivity

Unique Feature

« Originate from

crystalline

structures

Interconnectivity of

pores

Control of the level
of connectivity
using either
stretching- or
bending-
dominated unit
cells (beam-based

unit cells)

Control of the
localised curvature
using sheet-based
designs (surface-
based unit cell

designs)

Broader range of
morphological and
mechanical

properties

Less sensitivity to

local defects

Straightforward
design and fewer
complications with
overall structural

integrity

Caution in 3D

Printability
o Limitation in

minimum feature
sizes (e.g., strut

thickness)

o Orientation with

respect to the

build plate

» Design of self-
supporting struts
and their
orientations with
respect to the

build plate

e Limitation in
minimum feature
sizes (e.g., strut
thickness and

orientations)

https://encyclopedia.pub/entry/26449

5/22



Geometrical Design of Lattices in Additive Manufacturing | Encyclopedia.pub

Design
Strat%gy Method
Topology Analytical
optimisation  mathematical
models and
computational
approaches to
design and

obtain optimised
microstructures

Geometry/Mechanism
Example

 ESO—evolutionary
structural

optimisation

o SIMP—solid
isotropic material

with penalisation

o BESO—bi-directional
evolutionary
structural

optimisation

Unique Feature

Smooth stress
transition using
localised
geometrical

adjustment

Independent
tailoring of
mechanical

properties

Similarity to
biological
materials (e.g.,

bone)

Use of commercial
tools and free

codes

Local
microstructural

compatibility

Creating topology-
optimised lattice
structures with
atypical properties
considering
multiple objective
functions (e.g.,
negative thermal

expansion)

Design for multi-
functional or
mutually exclusive
properties (e.g.,

high elastic

Caution in 3D

Printability

Limitation in
manufacturability
due to the
complexity of the

final product

Optimisation of
the disposition of
support materials
during AM
process to
alleviate stress

concentrations

Acceleration of
support removal

process

https://encyclopedia.pub/entry/26449

6/22



Geometrical Design of Lattices in Additive Manufacturing | Encyclopedia.pub

Caution in 3D
Printability

Design
Strategy

Geometry/Mechanism

Method Example

Unique Feature

Bio-inspired
design

Bio-inspired
designs

Image-based

» Functional gradient
and hierarchical

structures

e Original tissue
obtained from non-
destructive imaging
(e.g., MRl or CT)

stiffness and
permeability)
Used for tissue
adaptation
purposes and
design of
orthopaedic

implants

Vast design library o Limitation in
of natural cellular minimum feature

materials sizes

Multi-functionality e Use of multi-
and exceptional material 3D
mechanical printing
properties, such as technology with
graded stiffness, extreme
mechanical
property

mismatches

using co-
continuous multi-
material cellular

structures

Smooth transitions
of target
parameters in
three dimensions
and minimised
stress
concentrations at

interfaces

Mimicking the
functionality and

microstructural

https://encyclopedia.pub/entry/26449

7/22



Geometrical Design of Lattices in Additive Manufacturing | Encyclopedia.pub

Caution in 3D

Design Geometry/Mechanism
A Printability

Strategy Example Unique Feature
complexity of the
native tissue

» Creating patient-
specific implants
and medical

devices

Meta- » Unprecedented o Simple to very

biomaterials . . .
multi-physics complex unit cell

properties (e.g., designs
balance between
mechanical e Integration of

properties and different unit

mass transport) cells, particularly
for the hybrid

+ Negative Poisson’s ) )
) ) e Tailor-made design of meta-
ratio or auxetic i ) )
] (mechanical) biomaterials
behaviour (e.g., re- }
) properties and
entrant, chiral, and ¢ ionality (
- _ o unctionality (e.g.,
DeS|g'ner rotating (semi-)rigid
material or 2D to 3D shape

mechanical unit cells

. morphing using
metamaterial

« Non-auxetic (e.g., CITE R U laling

TPMS-based porous
structures)

techniques)

« Stronger interface \al design

between the .
el " | designs.

designed part and
) g through
host tissue

» installed

« Outstanding quasi- . The final
static and fatigue ietting the

performance

[19] roach 20
Kinematic or  Multi-stability . Fabriﬁ |Pg non-
compliant gi

mechanism-
based designs

Jroposed,
assembly

* Self-folding mechanisms with sause the

compliant or rigid 'om these

therefore,

erapie e process engineer 1o 10aa iarge mnes witn aetainea reatures In e su prinung sonware.

https://encyclopedia.pub/entry/26449 8/22



Geometrical Design of Lattices in Additive Manufacturing | Encyclopedia.pub

« Kinematic joints (e.g., :(?lls h.ave
mechanisms metallic clay) rised into

fwo major grou peating unit cells can he seen in

PRl 1

lattices with irregular or random microstructures.

2.1.1. Beam-Based Unit Cells

One of the most common geometries for producing metallic or non-metallic lattice structures is the beam- or strut-
based design, which includes beam-based unit cells that repeat spatially in 3D space. By reshaping the geometry,
for example, by changing the size and thickness of struts and reforming the topology or connectivity of recurrent
unit cells, the overall physical characteristics of the lattices, such as the relative density, pore size, and pore
geometry, can be adjusted accordingly 2223 Body-centred cubic (BCC), face-centred cubic (FCC), and their
variations (analogous to crystalline structures 241231 cubic, diamond, and octet-truss) are just some examples of

well-known strut-based topologies (28],

From a micro-mechanical viewpoint, lattice structures can be classified into two categories, namely, bending-
dominated and stretching-dominated unit cells. Stretching-dominated unit cells are typically stiffer and have higher
mechanical strength than bending-dominated ones 2. However, achieving a fully stretch-dominated unit cell is
nearly impossible, as some areas of the struts in a unit cell can experience bending loads. Strut-based unit cells

can be characterised by their Maxwell number (28],

2.1.2. Surface-Based Unit Cells

Sheet-based unit cells belong to the category of implicit surface designs, in which mathematical equations define
pore configurations. Triply periodic minimal surfaces (TPMS) are specific classes of sheet-based unit cells that
provide high flexibility in the design of lattice structures 22, The full integration of pores in TPMS makes them
suitable for use in scaffold designs in tissue regeneration and tissue ingrowth applications [22EE TPMS-based
porous structures also have a zero-mean surface curvature that can be considered a unique property &, It must be
emphasised that the fabrication of additively manufactured TPMS geometries with high quality is a challenging
procedure. This limits the number of available TPMS designs with limited porosity. Some TPMS geometries, such

as primitive, I-WP, gyroid, and diamond designs, can nevertheless be realised.

2.1.3. Disordered and Random Network Designs

The arrangement of unit cells in lattice structures can be disordered, where the types or dimensions of the cells
change within the object. As an example of such disordered systems, functionally graded structures can be
designed, where pore sizes vary within the lattices. AM of graded porous structures has recently become prevalent
(821331 particularly in biomedical engineering 4821, One crucial reason for this increasing interest is the feature that
causes a smooth stress distribution in the product to avoid stress concentrations at abrupt geometrical alterations.

However, their geometrical complexities cause the AM of graded arrangements to be challenging, particularly when
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they feature more stochastic or disordered graded designs. This can result in the manufacturing of struts that are

incapable of self-support, resulting in a poor AM outcome.

In contrast to uniform lattice structures, disordered lattice structures have several advantages. First, they can be
designed to exhibit a broader range of (e.g., mechanical) properties rather than a particular targeted value.
Therefore, the range of achievable properties can be expanded using random networks and may realise smooth
variations in properties. An example is the rational design of microstructures to regulate elastic mechanical
properties separately (i.e., the duo of elastic stiffness and Poisson’s ratio) 38871, The theoretical upper limits for the
mechanical properties of lattices in 2D or 3D have been defined by Hashin and Shtrikman B8l |t has been
observed that the application of lattices with anisotropic microstructures can enhance these theoretical upper
bounds 2. The second advantage is that random networks are less susceptible to local defects created during the
AM process due to their stochastic nature. Third, their design process is much more straightforward than that for
uniform and ordered networks. In ordered networks, the structural integrity and assembly of unit cells are fairly
challenging tasks. In contrast, it is easier to combine several types of unit cells in random network lattices, such as

combining stretch-dominated unit cells with bending-dominated unit cells.

2.2. Topology Optimisation Designs

Topology optimisation (TO) can be defined as the application of mathematical models to design optimised
arrangements of microstructures of porous structures to obtain desired and optimum properties while satisfying
certain conditions. TO algorithms combined with computational models help designers to determine topologically
optimised constructs as well as local microstructural compatibility 4%, Several optimisation approaches have
rapidly evolved and been applied for this purpose in AM 3 among which “inverse homogenisation” is an example
(421431 TO using homogenisation methods provides tools to realise targeted effective and unusual properties
through the disposition of unit cells and material distribution in 3D space. Examples of these atypical properties are

the negative thermal expansion coefficient (44l and the negative refraction index 42!,

Various objective functions can be considered for the design of AM lattices. An example of an objective function
can be defined based on maximising the specific stiffness (i.e., stiffness-to-mass ratio), which can lead to lattices
with similar anisotropic spongy-bone microarchitectures 481, There are some optimisation models that have been
developed by considering bone tissue adaptation processes (11471148 in order to create the optimal designs of
microstructures of lattice parts that are often used for the creation of bone scaffolds and orthopaedic implants in
biomedical engineering “9IBABLIB2] Strain energy can also be defined as another objective function for the TO of

load-bearing lattice structures.

For multi-physics optimisation problems, the TO of lattice structures can be defined such that multiple objective
functions can be optimised 3. This allows for the production of materials with multi-functional properties.
Examples include the design of lattice geometries with two combined mutually exclusive properties, such as a
maximised bulk modulus or elastic stiffness and permeability 23124, This can also be performed using the TO of

functionally graded porous biomaterials 52,
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Several optimisation techniques have already been developed and applied in the design of optimised topologies for
lattice structures with multi-functional properties. These include evolutionary structural optimisation B8I37 solid
isotropic materials with the penalisation method 85960 the bi-directional evolutionary structural optimisation
method 8162l and level-set algorithms 83, There are various commercial optimisation tools (e.g., TOSCA, Pareto
works, and PLATO [6—4]) and free codes 84 available for the TO of AM lattices.

Current research integrates the design aspects of TO with AM fabrication features (63881 such as the procedure
that deals with optimising the disposition of support materials during the AM process. This integration helps
alleviate stress concentrations at struts and their junctions in lattice structures during or after 3D printing, when the

support materials are being removed, thus saving material and shortening the lead time [28167],

2.3. Bio-Inspired Design

Another approach in the design of lattice structures is bio-inspired design. Natural cellular materials, such as bone,
cork, and wood, can enrich scaffold design libraries 88979 various key design elements present in the
structures of natural materials (e.g., functional gradient and hierarchy) can be translated into bio-inspired porous
materials, primarily for biomaterials employed in tissue engineering. An evident instance of natural cellular material
is cancellous or trabecular bone—a porous biological material mainly composed of hydroxyapatite minerals and
collagens shaped at several hierarchical levels. A connected network of trabeculae in the form of rods and plates
forms the cellular structure of cancellous bone 1. The distribution of trabecular microstructures is a functionally
graded placement where the porosity close to the outer shell is lower than that of the inner shell of the bone. The
design of bio-inspired lattice structures can benefit from mimicking these features. Co-continuous multi-material
cellular constructs with inter-penetrated boundary phases exhibit multi-functionality and remarkable mechanical
properties, such as gradient stiffness in one layout /2. In this respect, AM technologies can create such

components with smooth transitions of target parameters in three dimensions and minimise stress concentrations
at interfaces [3I74[75[76],

The importance of this aspect becomes more visible for orthopaedic implants used to treat large bone defects
when the bone cannot go through the natural self-healing process. In such cases, external intervention is
necessary to facilitate the healing process EIlZZ, but the repair can be challenging. The optimal biological choice is
the use of either autograft (tissue taken from the patient) or allograft (tissue taken from another donor or person)
[78 However, these methods can lead to several secondary issues, such as problems with harvesting tissue from
the patient or the risk of transmitting diseases between patients in the case of allograft tissue. The alternative

solution is to design and implant biomimetic materials and constructs to repair skeletal defects.

One method of establishing the geometry of biomimetic lattice constructs is to derive the original configuration by
using non-destructive imaging methods, such as computed tomography (CT) or magnetic resonance imaging
(MRI). Image-based design methods have been extensively used to design implants and bio-prostheses in tissue
reconstruction applications 2, These non-destructive imaging modalities have also been used to determine the

shape variations of long bones at different anatomical locations (2. Another significant advantage of using the
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imaging method is the possibility of developing patient-specific implants, where the geometry of the implant is
based on the configuration of the target bone of the individual [B1IE21(83],

2.4. Meta-Biomaterials

“Batch-size-indifference” and “complexity-for-free” are two additional characteristics of design for AM 2HE4 These
features have flourished in the creation of patient-specific meta-biomaterial implants with tailored properties using
“designer material”. Designer materials, also known as mechanical metamaterials, are defined as advanced
engineering materials that exhibit remarkable properties based on their microarchitectural designs rather than their
chemical compositions 286 One of these atypical characteristics is the negative Poisson’s ratio or auxetic
property &7 which is defined as a lateral expansion upon longitudinal extension. Penta-mode metamaterials (8],
shape matching BRI rate dependency 2233 crumpling 24!, and action-at-a-distance 92! are other examples
of these unusual properties that can be achieved by the rational design of engineered mechanical metamaterials.
Three major types of unit cells with auxetic properties can be identified, namely, re-entrant, chiral, and rotating
(semi-)rigid 28], These designs have been implemented and additively manufactured in 2D or 3D. Among the
abovementioned designs, the re-entrant unit cell is one of the most straightforward designs that enables the control
of the values of Poisson’s ratio by merely changing the angle of struts. It is also the more researched type of unit

cells with auxetic properties as compared to the other designs.

There are reports on auxetic behaviour in skeletal tissues, such as tendons 7! and trabecular bone. It has been
observed that scaffolds with auxetic properties promote neural differentiation. This can be attributed to them
providing mechanical cues to pluripotent stem cells [28l. There is not much evidence on the advantages of auxetic
behaviour in improving bone tissue regeneration thus far. Nevertheless, it has been reported that the hybrid design
of meta-biomaterials (i.e., the rational combination of unit cells with positive and negative values of Poisson’s ratio)
enhances the longevity of orthopaedic implants 2. As evidence, it has been observed that the hybrid design of
meta-biomaterials for the hip stem prevents the development of a weak interface between the implant and bone
and, consequently, prevents the loosening of the implant. This is particularly important because wear particles
released by implant loosening can cause inflammatory responses in the body [1OQI101]i102] - Additionally, auxetic
meta-biomaterials exhibit superior quasi-static 193 and fatigue performance 194 enabling them to be good
candidates for load-bearing (e.g., hip stems) applications. The surface and under-structure of meta-biomaterials
can also be engineered using post-processing techniques, such as abrasive polishing, electropolishing 293 and

hot isostatic pressing [298 which can improve their surface finish and mechanical properties.

Other geometrical designs with non-auxetic properties (cube, diamond, rhombic dodecahedron, etc. 197) have also

been explored for use in biomedical devices, such as space-filling scaffolds 198,

Owing to the unique features of TPMS-based porous structures, these geometries are immensely popular as
designs for meta-biomaterials [LOALLOMLLIIIZNIS - First, their mean surface curvature is fairly similar to that of
trabecular bone [L14IL15]116] Second, the importance of the surface curvature as a mechanical cue in tissue

regeneration has been reported BILZILIBILIIN 5nd extensively discussed in several studies 129, Therefore, it can

https://encyclopedia.pub/entry/26449 12/22



Geometrical Design of Lattices in Additive Manufacturing | Encyclopedia.pub

be assumed that TPMS-based porous meta-biomaterials may enhance tissue regeneration performance. It has
also been reported that TPMS-based geometries can provide a perfect balance between mechanical properties
(i.e., elastic modulus and yield stress) and mass transport characteristics (i.e., permeability) 109221l and achieve a
balance similar to that of bone. The multi-physics properties of TMPS-based geometries can also be decoupled by

combining multi-material 3D printing and parametric designs using mathematical approaches (e.g., hyperbolic
tiling) (22,

Different forms of 2D and 3D shape-shifting mechanism-based designs (e.g., multi-stability 23 or self-folding
techniques using the origami or kirigami approach [124l125]) have also been employed to create advanced meta-
bioimplants with enhanced properties and functionalities. Examples are deployable meta-bioimplants 128112271 gnd
3D foldable curved-sheet (i.e., TPMS) lattices made with origami-folding techniques 228, One of the benefits of the
transition between (2D) flat constructs to 3D meta-biomaterials is that, in such cases, the surfaces can be

decorated with additional functionalities. Examples of such induced features are nano-patterns 1291,

Kinematic or compliant mechanisms can also be employed in the design of meta-biomaterials. This allows for
fabricating non-assembly mechanisms with compliant or rigid joints 139, Non-assembly designs have shown great

potential in the fabrication of orthopaedic implants using shape-morphing metallic clays 131,
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