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Additive manufacturing (AM, also known as 3D printing) is an advanced manufacturing technique that has enabled

progress in the design and fabrication of customised or patient-specific (meta-)biomaterials and biomedical devices (e.g.,

implants, prosthetics, and orthotics) with complex internal microstructures and tuneable properties. Several design

guidelines have been proposed for creating porous lattice structures, particularly for biomedical applications.
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1. Introduction

Additive manufacturing (AM, also known as 3D printing) technologies are among the most feasible advanced

manufacturing options to create complex structures for use in technology-driven industries, such as healthcare ,

automotive , and aerospace . AM, being different from other manufacturing methods, such as subtractive and

formative methods, results in less scrap and waste of materials and allows for lightweight complex structures, often hollow

or porous, thus requiring less material input and energy input during their fabrication and service. Seven categories of AM,

namely, binder jetting, directed energy deposition, material extrusion, material jetting, powder bed fusion, sheet

lamination, and vat photopolymerisation, have been recognised and defined in the ISO/ASTM 52900 standard .

Not all AM processes in the ASTM classification are equally developed and used for medical devices and biomaterial

fabrication . Here is a summary of the capabilities, limitations, and pros and cons of conventional processes and

associated materials (e.g., metals and their alloys, polymers, and ceramics) used in the fabrication of biomaterials (Table
1) in terms of printing speed, part sizes, degree of anisotropy, achievable resolution, the possibility of embedding cells in

feedstock materials, the need for support, the need for post-processing, and costs. The success of each of these 3D

printing processes relies, to a large extent, on the employment of optimised or suitable process parameters within the

capabilities of the available AM machines that are associated with specific AM processes.

Table 1. Summary of the different AM techniques, useable materials, their pros and cons, and their biomedical

applications.
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  Techniques and
Materials Pros Cons Biomedical Application

Material
Deposition 

Material
Extrusion (FDM)

Hydrogels

Thermoplastics

Ceramics

Bio-inks

Low cost

Accessible

Composite

materials

Open-source

design

Slow

Anisotropy in printed

part

Low resolution

Nozzles impart high

shear forces on cells

Bioprinting of

scaffolds for cell

culture

Tissue and organ

development

Production of rigid

and soft anatomical

models for surgical

planning

Directed Energy
Deposition (DED)

Metal

Fast

Composite

materials

Dense part

Expensive

Low resolution

Requires post-

processing/machining

Limited use in

biomedical

application

Material
Jetting (Polyjet)

Photopolymer

Bio-inks

Good

resolution

Good cell

viability

Multiple

cell/material

deposition

Slow

Material waste

Limited material

selection

Limited fabrication size

Bioprinting of

scaffolds for cell

culture tissue and

organ development

(soft tissue)

Powder-based 

PBF (SLS, SLM,
DMLS, EBM)

Thermoplastics

Metal powders

Ceramic

powders

High strength

and dense

parts

Fast

No solvents

required

No support

required

Most expensive

Post-processing

required

Metallic implants

Dental craniofacial

and orthopaedic

Temporary and

degradable rigid

implants

Binder Jetting
Metal

Polymer

Ceramics

Low cost

Fast

Multi-colour

printing

No support

needed

Large objects

Low strength

Requires post-curing

and post-processing

Powder poses a

respiratory hazard

Degradable metallic

implants

Generally used for

hard, mineralised

tissues
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  Techniques and
Materials Pros Cons Biomedical Application

Liquid-based 

SLA
Photopolymer

Bio-resin

Ceramic resins

High

resolution

Fast

Good cell

viability

Nozzle free

Raw material toxicity

Limited material

selection

Possible harm to DNA

by UV

Bioprinting of

scaffolds for cell

culture

Tissue and organ

development can be

used for both soft

and hard tissues

DLP
Photopolymer

Bio-resin

Ceramic resins

In addition to selecting the proper AM techniques and suitable printing parameters, the microarchitecture design of

biomaterials is one of the critical aspects of their development. It is often necessary to design porous or lattice structures

for biomedical applications. This implies that the morphologies and sizes of the pores of biomaterials must be fully open

and interconnected to allow for the transport of nutrients and oxygen to cells .

The advent of AM technologies has provided unique opportunities for the accurate arrangement of the sizes and internal

architectures of pores at a microscopic level and to produce organic geometries with complex internal architectures and

passages . This is one of the most important merits of AM over conventional fabrication technologies, such as

casting and moulding , in which the designer has virtually no control over the precise details of the internal geometries

of porous materials.

2. Geometrical Design of Lattices

While AM offers almost unlimited possibilities to part designers, there are several constraints in the structural design of

lattices that limit the theoretical ability of AM to fabricate porous structures with highly complex geometries. Several

inherent limitations related to the processability of the designed part also exist in AM methods, which has led to the

introduction of several guidelines to manage these constraints and limitations . Some of these constraints are

recognised as minimum feature size (e.g., wall thickness, edges, and corners), the orientation of lattice structures on the

build plate for self-overhanging, support materials, and support removal .

As an example, in powder bed fusion (PBF) techniques, overhanging structures, which are defined as parts of lattice

structures that are not self-supported, can result in undesirable defects in lattice structures . There are no underlying

layers or solidified sections to support these overhanging parts during their fabrication, which is why the choice of

orientation during building is critically important. The overhanging structure also depends on the critical fabrication angle

. Sacrificial support materials, therefore, need to be used for overhanging structures below a specific fabrication angle.

These sacrificial support materials need to be removed (e.g., in PBF techniques) or washed away (e.g., in vat

photopolymerisation techniques) from the structures during post-processing, which may damage additively manufactured

parts. To compensate for that and achieve optimum results with fewer support materials, the parts need to be designed

with self-supported struts in lattice structures. Restricted build envelopes and the application of a single material in the

manufacturing process of metallic materials can also be specified as other limitations, although achievable sizes have

been considerably increased in recent years, and combinations of materials have become possible, e.g., by means of a

recoater. In some cases, the limitation of a combination of materials can be resolved by alloying elemental metallic

powders . This limitation can also be overcome by using multiple nozzles in extrusion-based AM techniques.

Creating the geometrical design of a lattice structure is the first step in designing AM lattices. Lattice structures can be

broadly classified as open-cell or closed-cell cellular structures. Because it is not possible to remove the residual material

(e.g., entrapped powder particles in the case of PBF processes or supports in vat photopolymerisation processes) in

closed-cell lattices, open-cell lattices are mostly chosen for fabrication using AM techniques. There are various proposed

design principles regarding the geometrical arrangement of lattice structures (an overview is provided in Table 2). In some

cases, we may combine two or more of these design methods to obtain a more desirable lattice structure.
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Table 2. Summary of the different approaches for the geometrical design of lattices.

Design
Strategy Method Geometry/Mechanism

Example       Unique Feature       Caution in 3D
Printability

Library-
based

Ordered unit cells

Beam-based: FCC,

BCC, octet-truss, and

diamond

Sheet-based: TPMS,

gyroid, diamond, and

primitive

Use of

(non-)commercial CAD

tools

Simplicity in

geometrical design

Originate from

crystalline structures

Interconnectivity of

pores

Control of the level of

connectivity using

either stretching- or

bending-dominated unit

cells (beam-based unit

cells)

Control of the localised

curvature using sheet-

based designs

(surface-based unit cell

designs)

Design of self-

overhanging

structure and

sacrificial support

Limitation in

minimum feature

sizes (e.g., strut

thickness)

Orientation with

respect to the build

plate

Disordered unit cells

Functionally graded

Control of the level of

connectivity

Broader range of

morphological and

mechanical properties

Less sensitivity to local

defects

Straightforward design

and fewer

complications with

overall structural

integrity

Smooth stress

transition using

localised geometrical

adjustment

Independent tailoring of

mechanical properties

Similarity to biological

materials (e.g., bone)

Design of self-

supporting struts and

their orientations with

respect to the build

plate

Limitation in

minimum feature

sizes (e.g., strut

thickness and

orientations)



Design
Strategy Method Geometry/Mechanism

Example       Unique Feature       Caution in 3D
Printability

Topology
optimisation

Analytical
mathematical
models and
computational
approaches to
design and obtain
optimised
microstructures

ESO—evolutionary

structural optimisation

SIMP—solid isotropic

material with

penalisation

BESO—bi-directional

evolutionary

structural optimisation

Use of commercial

tools and free codes

Local microstructural

compatibility

Creating topology-

optimised lattice

structures with atypical

properties considering

multiple objective

functions (e.g.,

negative thermal

expansion)

Design for multi-

functional or mutually

exclusive properties

(e.g., high elastic

stiffness and

permeability)

Used for tissue

adaptation purposes

and design of

orthopaedic implants

Limitation in

manufacturability

due to the complexity

of the final product

Optimisation of the

disposition of support

materials during AM

process to alleviate

stress concentrations

Acceleration of

support removal

process



Design
Strategy Method Geometry/Mechanism

Example       Unique Feature       Caution in 3D
Printability

Bio-inspired
design

Bio-inspired designs

Functional gradient

and hierarchical

structures

Vast design library of

natural cellular

materials

Multi-functionality and

exceptional mechanical

properties, such as

graded stiffness, using

co-continuous multi-

material cellular

structures

Smooth transitions of

target parameters in

three dimensions and

minimised stress

concentrations at

interfaces

Limitation in

minimum feature

sizes

Use of multi-material

3D printing

technology with

extreme mechanical

property mismatches

Image-based

Original tissue

obtained from non-

destructive imaging

(e.g., MRI or CT)

Mimicking the

functionality and

microstructural

complexity of the native

tissue

Creating patient-

specific implants and

medical devices



Design
Strategy Method Geometry/Mechanism

Example       Unique Feature       Caution in 3D
Printability

Meta-
biomaterials

Designer material or
mechanical
metamaterial

Negative Poisson’s

ratio or auxetic

behaviour (e.g., re-

entrant, chiral, and

rotating (semi-)rigid

unit cells

Non-auxetic (e.g.,

TPMS-based porous

structures)

Unprecedented multi-

physics properties

(e.g., balance between

mechanical properties

and mass transport)

Tailor-made

(mechanical) properties

and functionality (e.g.,

2D to 3D shape

morphing using

origami-folding

techniques)

Stronger interface

between the designed

part and host tissue

Outstanding quasi-

static and fatigue

performance

Simple to very

complex unit cell

designs

Integration of

different unit cells,

particularly for the

hybrid design of

meta-biomaterials

Kinematic or
compliant
mechanism-based
designs

Multi-stability

Self-folding

Kinematic

mechanisms

Fabricating non-

assembly mechanisms

with compliant or rigid

joints (e.g., metallic

clay)

2.1. Library-Based Design

Computer-Aided Design (CAD), implicit surfaces, and image-based design can be categorised as traditional design

strategies . Open-source or commercial CAD tools/software have been used to develop CAD-based designs. These

designs may then be transformed into the standard tessellation language (STL) format before going through the

manufacturing process. In some cases, STL files can also be accessed through a software package installed on the 3D

printing machine in order to control or modify the process parameters prior to or during printing. The final AM lattice

structures can be generated by adjusting the process parameters of the input design file and setting the support material

within the entire porous media.

Recently, other approaches (e.g., the single point exposure scanning strategy  and vector-based approach  for

selective laser melting (SLM) printing or voxel-based approach  for Polyjet printing) have been proposed, which can

boost the fabrication speed of an object with even more geometrical complexities. This is because the STL files of designs

with too many complexities and details are often very large. The designs resulting from these approaches usually have

smaller file sizes, thus allowing for easier file manipulation. These approaches, therefore, enable the process engineer to

load large files with detailed features in the 3D printing software.

A unit cell can be identified as the smallest feature size in lattice structures with periodic microstructures. Unit cells create

an ordered design by tessellating in a 2.5D plane (i.e., extruded in a 2D plane) or 3D space. Unit cells have already been

identified in various forms, such as cubic or prismatic unit cells. They can be broadly categorised into two major groups,

namely, beam-based and sheet-based unit cells. No specific repeating unit cells can be seen in lattices with irregular or

random microstructures.

2.1.1. Beam-Based Unit Cells

One of the most common geometries for producing metallic or non-metallic lattice structures is the beam- or strut-based

design, which includes beam-based unit cells that repeat spatially in 3D space. By reshaping the geometry, for example,
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by changing the size and thickness of struts and reforming the topology or connectivity of recurrent unit cells, the overall

physical characteristics of the lattices, such as the relative density, pore size, and pore geometry, can be adjusted

accordingly . Body-centred cubic (BCC), face-centred cubic (FCC), and their variations (analogous to crystalline

structures , cubic, diamond, and octet-truss) are just some examples of well-known strut-based topologies .

From a micro-mechanical viewpoint, lattice structures can be classified into two categories, namely, bending-dominated

and stretching-dominated unit cells. Stretching-dominated unit cells are typically stiffer and have higher mechanical

strength than bending-dominated ones . However, achieving a fully stretch-dominated unit cell is nearly impossible, as

some areas of the struts in a unit cell can experience bending loads. Strut-based unit cells can be characterised by their

Maxwell number .

2.1.2. Surface-Based Unit Cells

Sheet-based unit cells belong to the category of implicit surface designs, in which mathematical equations define pore

configurations. Triply periodic minimal surfaces (TPMS) are specific classes of sheet-based unit cells that provide high

flexibility in the design of lattice structures . The full integration of pores in TPMS makes them suitable for use in

scaffold designs in tissue regeneration and tissue ingrowth applications . TPMS-based porous structures also

have a zero-mean surface curvature that can be considered a unique property . It must be emphasised that the

fabrication of additively manufactured TPMS geometries with high quality is a challenging procedure. This limits the

number of available TPMS designs with limited porosity. Some TPMS geometries, such as primitive, I-WP, gyroid, and

diamond designs, can nevertheless be realised.

2.1.3. Disordered and Random Network Designs

The arrangement of unit cells in lattice structures can be disordered, where the types or dimensions of the cells change

within the object. As an example of such disordered systems, functionally graded structures can be designed, where pore

sizes vary within the lattices. AM of graded porous structures has recently become prevalent , particularly in

biomedical engineering . One crucial reason for this increasing interest is the feature that causes a smooth stress

distribution in the product to avoid stress concentrations at abrupt geometrical alterations. However, their geometrical

complexities cause the AM of graded arrangements to be challenging, particularly when they feature more stochastic or

disordered graded designs. This can result in the manufacturing of struts that are incapable of self-support, resulting in a

poor AM outcome.

In contrast to uniform lattice structures, disordered lattice structures have several advantages. First, they can be designed

to exhibit a broader range of (e.g., mechanical) properties rather than a particular targeted value. Therefore, the range of

achievable properties can be expanded using random networks and may realise smooth variations in properties. An

example is the rational design of microstructures to regulate elastic mechanical properties separately (i.e., the duo of

elastic stiffness and Poisson’s ratio) . The theoretical upper limits for the mechanical properties of lattices in 2D or

3D have been defined by Hashin and Shtrikman . It has been observed that the application of lattices with anisotropic

microstructures can enhance these theoretical upper bounds . The second advantage is that random networks are less

susceptible to local defects created during the AM process due to their stochastic nature. Third, their design process is

much more straightforward than that for uniform and ordered networks. In ordered networks, the structural integrity and

assembly of unit cells are fairly challenging tasks. In contrast, it is easier to combine several types of unit cells in random

network lattices, such as combining stretch-dominated unit cells with bending-dominated unit cells.

2.2. Topology Optimisation Designs

Topology optimisation (TO) can be defined as the application of mathematical models to design optimised arrangements

of microstructures of porous structures to obtain desired and optimum properties while satisfying certain conditions. TO

algorithms combined with computational models help designers to determine topologically optimised constructs as well as

local microstructural compatibility . Several optimisation approaches have rapidly evolved and been applied for this

purpose in AM , among which “inverse homogenisation” is an example . TO using homogenisation methods

provides tools to realise targeted effective and unusual properties through the disposition of unit cells and material

distribution in 3D space. Examples of these atypical properties are the negative thermal expansion coefficient  and the

negative refraction index .

Various objective functions can be considered for the design of AM lattices. An example of an objective function can be

defined based on maximising the specific stiffness (i.e., stiffness-to-mass ratio), which can lead to lattices with similar

anisotropic spongy-bone microarchitectures . There are some optimisation models that have been developed by

considering bone tissue adaptation processes  in order to create the optimal designs of microstructures of lattice
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parts that are often used for the creation of bone scaffolds and orthopaedic implants in biomedical engineering 

. Strain energy can also be defined as another objective function for the TO of load-bearing lattice structures.

For multi-physics optimisation problems, the TO of lattice structures can be defined such that multiple objective functions

can be optimised . This allows for the production of materials with multi-functional properties. Examples include the

design of lattice geometries with two combined mutually exclusive properties, such as a maximised bulk modulus or

elastic stiffness and permeability . This can also be performed using the TO of functionally graded porous

biomaterials .

Several optimisation techniques have already been developed and applied in the design of optimised topologies for lattice

structures with multi-functional properties. These include evolutionary structural optimisation , solid isotropic

materials with the penalisation method , the bi-directional evolutionary structural optimisation method , and

level-set algorithms . There are various commercial optimisation tools (e.g., TOSCA, Pareto works, and PLATO )

and free codes  available for the TO of AM lattices.

Current research integrates the design aspects of TO with AM fabrication features , such as the procedure that deals

with optimising the disposition of support materials during the AM process. This integration helps alleviate stress

concentrations at struts and their junctions in lattice structures during or after 3D printing, when the support materials are

being removed, thus saving material and shortening the lead time .

2.3. Bio-Inspired Design

Another approach in the design of lattice structures is bio-inspired design. Natural cellular materials, such as bone, cork,

and wood, can enrich scaffold design libraries . Various key design elements present in the structures of natural

materials (e.g., functional gradient and hierarchy) can be translated into bio-inspired porous materials, primarily for

biomaterials employed in tissue engineering. An evident instance of natural cellular material is cancellous or trabecular

bone—a porous biological material mainly composed of hydroxyapatite minerals and collagens shaped at several

hierarchical levels. A connected network of trabeculae in the form of rods and plates forms the cellular structure of

cancellous bone . The distribution of trabecular microstructures is a functionally graded placement where the porosity

close to the outer shell is lower than that of the inner shell of the bone. The design of bio-inspired lattice structures can

benefit from mimicking these features. Co-continuous multi-material cellular constructs with inter-penetrated boundary

phases exhibit multi-functionality and remarkable mechanical properties, such as gradient stiffness in one layout . In

this respect, AM technologies can create such components with smooth transitions of target parameters in three

dimensions and minimise stress concentrations at interfaces .

The importance of this aspect becomes more visible for orthopaedic implants used to treat large bone defects when the

bone cannot go through the natural self-healing process. In such cases, external intervention is necessary to facilitate the

healing process , but the repair can be challenging. The optimal biological choice is the use of either autograft (tissue

taken from the patient) or allograft (tissue taken from another donor or person) . However, these methods can lead to

several secondary issues, such as problems with harvesting tissue from the patient or the risk of transmitting diseases

between patients in the case of allograft tissue. The alternative solution is to design and implant biomimetic materials and

constructs to repair skeletal defects.

One method of establishing the geometry of biomimetic lattice constructs is to derive the original configuration by using

non-destructive imaging methods, such as computed tomography (CT) or magnetic resonance imaging (MRI). Image-

based design methods have been extensively used to design implants and bio-prostheses in tissue reconstruction

applications . These non-destructive imaging modalities have also been used to determine the shape variations of long

bones at different anatomical locations . Another significant advantage of using the imaging method is the possibility of

developing patient-specific implants, where the geometry of the implant is based on the configuration of the target bone of

the individual .

2.4. Meta-Biomaterials

“Batch-size-indifference” and “complexity-for-free” are two additional characteristics of design for AM . These

features have flourished in the creation of patient-specific meta-biomaterial implants with tailored properties using

“designer material”. Designer materials, also known as mechanical metamaterials, are defined as advanced engineering

materials that exhibit remarkable properties based on their microarchitectural designs rather than their chemical

compositions . One of these atypical characteristics is the negative Poisson’s ratio or auxetic property , which is

defined as a lateral expansion upon longitudinal extension. Penta-mode metamaterials , shape matching , rate
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dependency , crumpling , and action-at-a-distance  are other examples of these unusual properties that can be

achieved by the rational design of engineered mechanical metamaterials. Three major types of unit cells with auxetic

properties can be identified, namely, re-entrant, chiral, and rotating (semi-)rigid . These designs have been

implemented and additively manufactured in 2D or 3D. Among the abovementioned designs, the re-entrant unit cell is one

of the most straightforward designs that enables the control of the values of Poisson’s ratio by merely changing the angle

of struts. It is also the more researched type of unit cells with auxetic properties as compared to the other designs.

There are reports on auxetic behaviour in skeletal tissues, such as tendons  and trabecular bone. It has been observed

that scaffolds with auxetic properties promote neural differentiation. This can be attributed to them providing mechanical

cues to pluripotent stem cells . There is not much evidence on the advantages of auxetic behaviour in improving bone

tissue regeneration thus far. Nevertheless, it has been reported that the hybrid design of meta-biomaterials (i.e., the

rational combination of unit cells with positive and negative values of Poisson’s ratio) enhances the longevity of

orthopaedic implants . As evidence, it has been observed that the hybrid design of meta-biomaterials for the hip stem

prevents the development of a weak interface between the implant and bone and, consequently, prevents the loosening of

the implant. This is particularly important because wear particles released by implant loosening can cause inflammatory

responses in the body . Additionally, auxetic meta-biomaterials exhibit superior quasi-static  and fatigue

performance , enabling them to be good candidates for load-bearing (e.g., hip stems) applications. The surface and

under-structure of meta-biomaterials can also be engineered using post-processing techniques, such as abrasive

polishing, electropolishing , and hot isostatic pressing , which can improve their surface finish and mechanical

properties.

Other geometrical designs with non-auxetic properties (cube, diamond, rhombic dodecahedron, etc. ) have also been

explored for use in biomedical devices, such as space-filling scaffolds .

Owing to the unique features of TPMS-based porous structures, these geometries are immensely popular as designs for

meta-biomaterials . First, their mean surface curvature is fairly similar to that of trabecular bone 

. Second, the importance of the surface curvature as a mechanical cue in tissue regeneration has been reported 

 and extensively discussed in several studies . Therefore, it can be assumed that TPMS-based porous meta-

biomaterials may enhance tissue regeneration performance. It has also been reported that TPMS-based geometries can

provide a perfect balance between mechanical properties (i.e., elastic modulus and yield stress) and mass transport

characteristics (i.e., permeability)  and achieve a balance similar to that of bone. The multi-physics properties of

TMPS-based geometries can also be decoupled by combining multi-material 3D printing and parametric designs using

mathematical approaches (e.g., hyperbolic tiling) .

Different forms of 2D and 3D shape-shifting mechanism-based designs (e.g., multi-stability  or self-folding techniques

using the origami or kirigami approach ) have also been employed to create advanced meta-bioimplants with

enhanced properties and functionalities. Examples are deployable meta-bioimplants  and 3D foldable curved-

sheet (i.e., TPMS) lattices made with origami-folding techniques . One of the benefits of the transition between (2D)

flat constructs to 3D meta-biomaterials is that, in such cases, the surfaces can be decorated with additional functionalities.

Examples of such induced features are nano-patterns .

Kinematic or compliant mechanisms can also be employed in the design of meta-biomaterials. This allows for fabricating

non-assembly mechanisms with compliant or rigid joints . Non-assembly designs have shown great potential in the

fabrication of orthopaedic implants using shape-morphing metallic clays .
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