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The crosslinking density of a material determines its physical properties, such as the porosity of the material. In
imprinting polymerizations, the porosity determines access to internal binding sites and thus the capacity of the
imprinted material. This entry is about effect of the commonly used crosslinking density in imprinting polymerization

for a variety of applications.

molecularly imprinted polymer MIP crosslinking density specific binding

| 1. Introduction

Imprinting polymerization is an exciting technique: By just adding one additional step to the synthesis of a common
polymer, a material can be made specific to a chemical. Basically, that chemical, the template, is added to the
synthesis solution. The monomers will surround the template automatically and form the strongest bonds possible,
since thermodynamically that happens to be the lowest energy state and thus is preferred. The monomers will then
be polymerized and crosslinked, and with that the three dimensional structure with the strongest bonds to the
template will be conserved. The additional step is to remove the template. This results in a pocket ideal for

rebinding the template &,

How useful specific binding is can be seen in biochemistry. A cell contains a large humber of compounds and
intermediates, but despite that, enzymes choose one specific compound to react without any side products, simply
by providing a very specific binding site. In organic chemistry that is only possible in very few cases with
complicated, many-step syntheses resulting in low yields. Another example are antibodies that recognize one
specific compound on the surface of pathogenic bacteria to then destroy those bacteria and thus prevent a
possible deadly infection. Imprinting polymerization promises specific binding to allow for analogous applications in

technology.

Early proof-of-concept for the specific binding with imprinting polymerization came from Mosbach’s group [, One
of the earliest applications that implemented molecularly imprinted polymers (MIPs) was the separation of chiral
compounds using chiral solid phases in column chromatography 22!, At this point, MIPs are used in many different
applications. Broadly, they can be grouped into two categories: Detection and sensing for a variety of compounds,
from contaminants to proteins in cells EIZBILL0LIAASA4)1SI6NLTIIE] and extraction and purification of

compounds from environmental and biological samples 12[29](21][22][23]24](25]
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The crosslinking density of a material determines its physical properties, such as the porosity of the material. In
imprinting polymerizations, the porosity determines access to internal binding sites and thus the capacity of the
imprinted material. The aim of this work is to analyze the effect of the commonly used crosslinking density in
imprinting polymerization for a variety of applications. This will be accomplished by selecting current examples of
imprinting polymerization and correlating the details of their syntheses with MIP capacity and polymer science data.
This will not be a comprehensive review of imprinting polymerization. In fact, only a small number of studies of the

vast imprinting polymerization literature will be used.

| 2. Common Syntheses for Imprinting Polymerizations

Imprinting polymerization generally uses a similar synthesis: A “functional monomer” is selected that is effective in
binding the template, the “structural monomer”, which is the crosslinker, is chosen to match the polarity needed for
the reaction and possibly also to bind to the template. A solution with the template and monomers is given time to
bind to each other, then the initiator is added to the mixture and the polymer is formed. After isolating the polymer,

the template is removed [, This results in specific binding sites that allow for the specific binding that differentiates
imprinted polymers from non-imprinted resins LIZIEI4IBI6I7EIOI10][111[12]{13][14]{15][16][17][18][19][20][21][22][23][24][25][26]

Most commonly, imprinting polymerization is based on non-covalent forces, but covalent and semi-covalent
imprinting has also been reported 24, There are variations in where the imprinting occurs (bulk imprinting or
surface imprinting [28]), as well as what materials are used (polymeric materials, inorganic materials 22 or hybrid

materials BB |n this work, the focus is on either bulk or surface imprinting in polymeric materials.

Looking at bulk imprinting of polymeric materials in more detail, the ratio between the template, functional
monomer, and crosslinker is important 2. The amount of functional monomer is directly related to the amount of
template since there has to be sufficient functional monomer to interact with all of the template molecules. The
crosslinker then fixes the three-dimensional structure that binds the template most effectively. An effective ratio
between template:functional monomer:crosslinker has been identified as 1:4:20 2. This has been used in the

following syntheses as the starting point for optimization of the system and the application in question 22!,

Surface imprinting was developed due to two common problems that were found with bulk imprinting, the difficulty
to remove all templates after MIP synthesis, and the difficulty to access internal binding sites B4l In surface
imprinting, the MIP is commonly prepared as a coating onto a hard particle. The starting ratio of template:functional

monomer:crosslinker is also 1:4:20 [34],

3. The Effect of Porogen and Crosslinking on Imprinted
Materials

In this work, specifically the ratio between the functional monomer and crosslinker is highlighted since that

determines the physical properties of the resulting MIP. That ratio also determines the number of accessible
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binding sites. Table 1 lists the ratio and the total capacity for a variety of examples in recent literature. A large

majority is based on the 1:5 ratio described in the preceding section.

Table 1. Functional monomer ratio and total capacity for MIPs for a variety of applications cited in selected recent

literature.
Monomer:Crosslinker Template I\él:zxg(\:lijtm Comments Reference
Molar Ratio Crosslinker pacity
(mglg)
Bulk imprinting
BET A2 670 m?/g, pore
UO.2+ vol. 1.439 mL/g, avg.
1:2.7 : 125 pore @ 2.2 nm 1 [35]
EGDMA .
Adsorption dependent
on pH, initial conc.,
regeneration
Bulk imprinting
2 2
15 Cu(II). , 216 BET A“ 6.7 m</g, pore [36]
Pentaerythrol triacrylate vol. 0.0088 mL/g, avg.
pore @ 5.2 nm 1
Ext lul tri tid imprinti
145 xtracellular matrix pepti gs 4955 Bulk imprinting [37]
Pentaerythrol triacrylate Most templates trapped
Bulk imprinting
i inhibi BET A% 193.8 m?
1:3,1:5 Serotonin reuptake2 inhibitors 273 93.8 m</g, pore [38]
EGDMA vol. 0.37 mL/g, pore @
7.7nm1?
Bulk imprinting
Sarafloxacin Several functional
1:3,1:4,1:5 2 58.6 monomers (291
EGDMA L
More crosslinking, less
capacity
- . Bulk imprinting
1:4to 1:20 L ac'g 24.7 Specialized acrylates [40]
EGDMA . .
1:4 highest capacity
125 Sulfonylurea pesticides 16 Bulk imprinting [41]
o Divinylbenzene ' BET A% 409.7 m%/g !
2-(3,4- L
dimethoxyphényl)ethylamine Stllellmp g
1:4 24.5 Optimized crosslinker 42l

Trimethylopropane
trimethacrylate 3

and porogen
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Monomer:Crosslinker Template “él;ZXig:;lfltm Comments Reference
Molar Ratio Crosslinker pacity
(mglg)
Bulk Imprinting
Atrazi Investigating porogen
1:0.38 . Grgi/'lnAez 345  BETA?237.5 m?/g, pore [43]
vol. 0.0268 mL/g, pore @
0.57nm1
4-Hydroxy-3- PoroBs:\k Irgfe:”s]?rzg(]:ture
1:5 nitrophenylacetic acid 0.106 ganéjr?sor o ’ [44]
EGDMA 2 anc sorpti
investigation
Surface imprinting,
Chloramphenicol hollo
15 pel! 64.3 ! 1]
EGDMA rods 1-3 ym long, @
50-180 nm !
) Peptide Surface imprinting, [46]
145 EDMA 4 6.9 hollow
- Surface imprinting,
1:1.2 E%llgi/llnAez 33.39 magnetic MIP [47]
BET A% 980 m?/g !
Membrane
Less crosslinking, more
) ] Cd(NOs3)2 adsorption 48]
1:2.5, 15 EGDMA? 32 Less imprinting
molecule, less
adsorption
_ Acteoside Surface imprinting, [49]
. EGDMA? 62.83 membrane
Surface imprinting
Surface crosslinking
_ Cd(NO3); only [50]
LL3 Ethylene diamine 250.7 BET: A2 192.2 m?/g,

pore vol. 0.052 cm3/g,
pore @ 113 nm 1

Surface imprinting,

Sulfa-methoxasole 20.0 magnetic MIP 51]

1: 0.68

2
ECGDMA Computational study
. Surface imprinting,
1:0.44 Sl 0.559 magnetic MIP [52]

4
EDMA Hybrid with silicon
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Monomer:Crosslinker Template “él;ZXig:;lfltm Comments Reference
Molar Ratio Crosslinker pacity
(mglg)
Hollow particle
14 Pseudohepfrlcm 450 Prepared by emulsmn 53]
EDMA polymerization
Inner @ ca. 30 um !
Estrogens Hollow particle
15 st 12.1 wparmce [54]
EGDMA Ca. 250 nm inside @
) Celecoxib . [55]
15 EGDMA 2 43.29 Hollow particle
Bulk imprinting
e BET: A2 4.78 m?/g, pore -
1:.0.2 Trimethylopropane 66.6 3
trimethacrylate 3 vol. 0.00554 cm?/g, pore
@2.35nm?
Surface imprinting,
1:0.0079 (Sl 127 magnetic MIP 571
EGDMA . o
Enantioselectivity 4:1
Start with colloidal silica
crystal microsphere
L Coat MIP on porous
Quinine
. crystal, then remove [58]
1:2.5 Trimethylopropane 15.38 crystal
; 3
trimethacrylate BET: A2 216 m2/g, pore
vol. 0.66 cm3/g, avg
pore @ 12.2 nm
Start with polydopamine
as the core
Artimisin Coat imprinted Si
1:1.05 3 Aminooropvitriethoxvsilane 4582 around by the sol-gel [59]
propy 4 method
Phase inversion, then
cast as membrane
Bulk Imprinting
] Cd(ln) Increased porosity by [60]
1:0.005 EGDMA 2 950 bubbling N through the
reaction

1 A% Surface area; @: Diameter. > Ethylene glycol dimethacrylate. 3 Trifunctional crosslinker. 4 Ethylene
dimethacrylate.

It is common to use porogens to increase the surface area and with that the capacity of the imprinted polymers

[42-44,61-65]. Most porogens are solvents or solvent mixtures. The solubility of the template, monomer(s), and
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crosslinker is one of the major factors determining the surface area [44,63,65]. Using a solvent or co-solvent that is
a non-solvent can lead to phase separation. If the phase separation leads to precipitation of the complex or the
polymer, that generally leads to reduced surface area [42,44,63]. If the non-solvent creates an emulsion, that can
lead to cracks or pores, which often increase the surface area [42]. An effective way to increase the surface area is
to use a solid porogen, usually a salt particle that can later be dissolved and washed out [61,62]. Insoluble

polymers have been reported as porogens, as well [61].

When more crosslinkers than monomers are used, each repeating unit of a polymer chain is connected to its
neighbors as well as to a repeating unit of a different polymer chain. That allows for minimal free volume between
each polymer chain, likely with a lot of interspersed crystalline regions. That means that only imprinting sites on the

surface are accessible for binding, and trapped templates will not be able to be removed.

This demonstrates another problem that internal imprinted sites have in an MIP: For a template to be able to reach
the site, there has to be a continuous channel to that site, as well as a flow of solvent with the template to be able
to move into the site and rebind. Especially with water as the solvent, the amount of water around a solute
molecule has to be large for an aqueous solution to be free-flowing 81, Water has shown to be very viscous due to
its extensive hydrogen bonding, and around hydrophilic compounds water can be strongly bound or even

crystalline 61,

Which brings up another point: The kinetics of reaching binding sites that are on the surface vs. inside a particle.
Templates that bind to surface sites can bind quickly, since the binding sites are readily accessible. Templates that
bind to internal sites have to move through a viscous solvent in likely bent channels to reach the binding sites.
Therefore, the kinetics of binding to internal sites will always be slower than the kinetics of binding to surface sites.

And yet, most studies using bulk imprinting report linear binding kinetics.

The combined evidence from polymer science suggests that when more crosslinkers than functional monomers are
used, the inside of the particle is extremely dense and the internal binding sites will not be accessible. Essentially,
bulk polymerization and surface polymerization will result in the same outcome, as the data in Table 1 also
suggested. In fact, one has to go to very low crosslinking densities (0.5 to 5% of crosslinker) to create materials

with accessible internal binding sites.
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