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Flood is one of the most destructive natural disasters, causing significant economic damage and loss of lives. Numerous

methods have been introduced to estimate design floods, which include linear and non-linear techniques. Since flood

generation is a non-linear process, the use of linear techniques has inherent weaknesses. To overcome these, artificial

intelligence (AI)-based non-linear regional flood frequency analysis (RFFA) techniques have been introduced. 
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1. Introduction

Flood is one of most devastating natural disasters, resulting in significant economic losses including human deaths .

This damages both rural and urban infrastructure like bridge and drainage systems . Flood generally leaves

undesirable sediments and debris in the affected lands , which can disrupt transportation networks , clog drainage

infrastructure and sewers  and may make lands unproductive. The cleaning up of flood debris is usually costly, not to

mention the disruption to the daily lives of the community involved . Due to climate change, the frequency and

magnitude of floods are increasing .

Flood forecasting requires significant efforts, and it is usually the responsibility of a large government organisation.

Governments spend a significant amount on various projects to identify flood-safe areas, which are used to build cities.

Researchers have developed numerous methods to estimate design floods, which are used to build flood-safe

infrastructure . Design flood is defined as a flood level or discharge associated with a return period or annual

exceedance probability such as a 100-year flood.

In addition to traditional techniques, like the rational method, physical and numerical  models have been proposed

for design flood estimation. Most of the physical models require in-depth knowledge of flood processes , making

them difficult to use in practice. Van den Honert and McAneney  pointed out the common limitations associated with

these physical models , which include model inaccuracies resulting in systematic errors (over or underestimation of

design floods) . On the other hand, data-driven models have been quite popular for flood estimation in recent years

. Examples include a quantile regression technique and a probabilistic rational method . This is because they usually

consider climate factors and catchment characteristics in developing models, which are easier to apply . A flood

frequency analysis (FFA) is the most popular method to estimate design floods, which uses observed peak discharge data

disregarding catchment characteristics . A normal distribution , log-normal distribution , Gumbel

distribution , generalised extreme value distribution and log-Pearson type III distribution  are some of the most

commonly used flood frequency distributions in FFA. One of the major limitations of FFA is the lack of long and good

quality recorded flood data at the location of interest. To overcome data limitations, hydrologists have proposed a regional

flood frequency analysis (RFFA), which attempts to estimate design floods at an ungauged catchment based on the

concept of a homogeneous region, which pools observed flood data from a group of similar catchments to estimate design

floods at the ungauged catchment . This method became more popular among researchers than physical models

because it saves time and resources . Probabilistic rational method (PRM) , multiple linear regression (MLR) ,

quantile regression techniques (QRT) , and index flood method (IFM)  are some of the most commonly used

RFFA techniques. However, some of the early RFFA techniques (e.g., rational method) have lost their popularity due to

their inconsistency and inappropriate model assumptions.

In the past two decades, scientists suggested hybrid or mixed methods to increase the relative accuracy of RFFA models

. Although some early linear models have been improved, they may not be accurate under some circumstances as

flood generation is basically a non-linear process . Hydrologists attempted to apply non-linear methods in RFFA such

as a non-linear regression analysis (where log-transformation of the variables is considered). Artificial intelligence (AI)-

based methods are also non-linear, but more powerful than simple non-linear models like log-log ones as they can

consider many different combinations of variables and complex non-linear processes in model building. Given that the

majority of flood estimation methods are data driven, they require a great deal of simplification and assumptions to be

practical, accessible, and implementable . They require relatively fewer input data and minimal knowledge of

fundamental physical processes involved. Over the last two decades, non-linear AI-based RFFA methods have grown in
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popularity over physical models as these provide more accurate results and are easier to apply . Artificial neural

networks (ANNs) , support vector regression (SVR) , adaptive neuro-fuzzy inference system (ANFIS) 

, genetic algorithms (GA)  and hybrid, mixed and combined approaches  are some of the most popular AI-

based flood estimation methods. As AI-based models are relatively new in flood estimation, it is not easy to decide which

one is to be applied for a given problem .

There are several important aspects to consider when building models based on AI. Firstly, these models like all other

data-driven models need enough data to develop and test the model . If adequate data exist, it is often possible to

build, test, and evaluate an AI-based model (similar to many other RFFA models) by dividing the data into training, test,

and evaluation data sub-sets . Cross-validation is also often used in building RFFA models when less data samples

are available . The more data used in the modeling, the less generalization error occurs, meaning that the final model

can be used on different sites with limited or no data available. Other benefits of having adequate data include the

simplicity of using different distribution methods, the ability to account for lost data or missing variables, and, most

crucially, the ability to train and validate the model multiple times to develop the best possible model . However, it

should be noted that data quality is of significant importance in developing and testing accurate models.

2. AI-Based RFFA Methods

Figure 1 illustrates how to develop an AI-based RFFA model. It is important to identify input variables. Some of the most

used input variables include catchment area (A), longitude (LON), latitude (LAT), elevation (EV), drainage density (DD),

average annual maximum daily precipitation (AP), rainfall intensity (I), vegetation coverage (VC), slope (SL), and relative

elevation (RE), fraction forested area (F), mean annual evapotranspiration (MAE), shape factor (SF), and stream density

(SDEN). Output variables include maximum stream flow, flood quantiles, and time to peak. Collected data are then

standardised to avoid a scaling problem. To build a reliable model, training, validation , and test data are required.

Different statistical measures are used to compare alternative models such as RMSE, RMSNE, and R .
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Figure 1. Steps in building an AI-based RFFA model.

2.1. ANN-Based RFFA Models

The ANN performs like a human nervous system in that it learns from previous trials and decides how to come up with a

better model by exploiting the best possible links between dependent (flood quantiles such as Q ) and independent

variables (such as rainfall) in a series of steps. ANN, as a data-driven tool, does not require any physical knowledge of

flood processes involved . One of the limitations of this method is lack of physical interpretation of the developed

models.

Shu and Burn  compared the ANN with a parametric regression analysis in one of the first articles on the AI-based

RFFA. They found that a properly developed ANN model outperforms both linear (REG-OLS) and non-linear (REG-

NONLINEAR) regression-based methods. They also compared the results of a single ANN to those of ANN ensembles,

concluding that the latter provided more accurate flood estimates. Jingyi and Hall  compared four different models,

including the residuals method, Ward’s method, fuzzy c-mean, and a variation of the ANN, known as the Kohonen

network. They found that, while other methods may be somewhat useful, the ANN method produced the lowest standard

error of estimate and could be a useful method if adequate data from enough sites are available.

Dawson et al.  applied ANN using data from 850 stations. They compared the results of the ANN method to those of

multiple regression models and found that ANN outperformed the other models. They noted that because there is little

need to understand the physics of flood generation processes, scientists from all disciplines, not just hydrologists, could

use the ANN method. Shu and Ouarda  developed RFFA models based on ANN and CCA using data from 151

catchments and found that the ANN–CCA combination provided better generalisation and accuracy. Srinivas et al. 

used AI-based RFFA and regression methods involving various AI-based algorithms. To determine the best approach for

data clustering, a regression analysis, CCA, and FCM algorithms were compared. They found that leave-one-out cross-
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validation based on the FCM algorithm produced better results when evaluating the accuracy of the estimated flood

quantities.

2.3. SVM-Based RFFA Models

The SVM method is widely used for classification, which examines data at higher dimensions . Several types of

kernels assist SVM in classifying data by minimising data margins, eliminating outliers, and focusing on relationships

between the test and training data. The most common kernel types used for developing SVM-based models include linear,

polynomial, radial basis function (RBF), and sigmoid function. Among these, the SVM-based RBF kernel is the most used

method that produces robust and consistent results.

Gizaw and Gan  developed RFFA-based ANN and SVR methods using data collected from 49 stations in Canada.

When the results of these two methods were compared, they found that the SVR method outperformed the ANN in terms

of consistency and generalisation ability. They also mentioned that better SVR performance could be attributed to smaller

datasets, whereas ANN would most likely produce more accurate results for larger datasets. Sharifi Garmdareh et al. 

estimated design floods using SVR, ANFIS, ANN, and NLR methods using more than 20 years of recorded data from 55

hydrometric stations in Iran. They tested various strategies for determining the best combination of input variables and

found that gamma testing (GT) was the most effective, which can improve the result of ANFIS and SVR over a single

method and that using GT reduced the number of input variables. They also noted that combining GT with the ANFIS

produced the best results, followed by GT + SVR.

Ghaderi et al.  used ANFIS, SVM, and GEP to estimate flood quantiles with a 50-year return period. From 21 years of

data collected from 47 catchments in Iran, they used GM and M-test to identify the most important predictor variables and

the best ratio of test and training data. They compared the results of the three methods and noted that all three were

“good” in terms of NASH, with the SVM method slightly outperforming the others in terms of R  and RMSE. Vafakhah and

Bozchaloei  used SVR, ANN, and NLR to estimate design floods using data collected from 33 stations in Iran over 20

years. They noted that, according to RRMSE and NASH, SVR is the most efficient method of the three and can be used

for regional flood duration curve analysis.

Haddad and Rahman  used 25 to 82 years of data from 202 catchments in Australia to evaluate 15 different

combinations of multidimensional scaling (MDS), bayesian generalised least squares (BGLSR), and SVR methods to

estimate design floods. They found that the MDS-based SVR method with RBF kernel outperforming others, including

linear, polynomial, RBF, and sigmoid kernels, in terms of consistency and accuracy of the results. They also noted that

using MDS improved the overall performance of all the methods.

Allahbakhshian-Farsani et al.  used 19 years of data from 54 hydrometric stations in Iran to compare the performance

of several AI-based RFFA methods. This entry employed methods such as SVR, multivariate adaptive regression spline

(MARS), boosted regression trees (BRT), and projection pursuit regression (PPR). Using various statistical indices such

as NASH, RMSE, RMSE, and R , they noted that the SVR model based on the RBF kernel outperformed all the others,

including non-linear regression.

From the above discussion it can be stated that both SVM and SVR were used in RFFA. A large set of catchments are

needed to group them into homogeneous sub-sets which can then be subjected to SVR to estimate flood quantiles.

2.4. GA and Hybrid Type of AI-Based RFFA Models

Hybrid models typically produce better results. As shown in Table 1, many scientists have conducted experiments based

on combining various AI-based RFFA models. Some of the most common hybrid models include genetic algorithm (GA)

combined with ANN or ANFIS. The GA is commonly used as a hybrid method in conjunction with other methods,

particularly ANN . Another popular hybridisation technique used in RFFA is the combination of canonical correlation

analysis (CCA) with ANN and ANN ensembles, as well as ANFIS methods. CCA improves the performance and reduces

the complexity of ANN-based RFFA models by exploiting regional flood data .

Table 1. Summary of AI-based RFFA studies (* indicates the best model) (ANN = Artificial neural network; GA = Genetic

algorithm, BGLS-QRT-ROI: Bayesian generalized least squares QRT combined with region of influence approach, BNN =

Backpropagation neural network, CANFIS = Co-active neuro fuzzy inference system, GEP = Gene-expression

programming, GRNN = generalized regression neural networks, LGP = Linear genetic programming (LGP), LR = Linear

regression, M5 = M5 model tree, MLP = Multi-layer perceptrons, MLR = Multiple linear regression, MNLR = Multiple non-

linear regression, QRT = Quantile regression technique, RBNN = Radial basis function-based neural networks, G-EANN =

generalized ANN-Ensembles, EANN = ANN-Ensembles, GAANN = GA-based ANN, BPANN = Back propagation for ANN,

FIS = Fuzzy inference system, CCA = canonical correlation analysis, NLCCA = Non-linear canonical correlation analysis,

BGLSR = Bayesian generalised least squares, MDS = multidimensional scaling, MARS = multivariate adaptive regression

spline, BRT = boosted regression trees, PPR = projection pursuit regression, WNN = wavelet neural network and RFR =

random forest regression).
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Reference Author, Year Model
Predictor
Variables
(Inputs)

Model
Output

Catchment,
Year Journal Country

(Catchment)
RMSE
*

RRMS
*

Zalnezhad et al.,
2022

ANFIS(FCM) *
ANFIS(SC)
ANFIS(GP)

QRT

A, I,
MAR, SF,

MAE,
SDEN,
S1085,
FOR

Q
181

Stations
40–89 Year

Water Australia 50.88 RRMS

Desai and
Ouarda, 2021

CCA-RFR *
PFR

CCA-GAM
EANN
ANN

CCA-MLR
CCA-Kriging
CCA-EANN
CCA-ANN

A, MBS,
FAL,
AMP,
AMD

Q
151

stations,
≥15 year

Journal of
Hydrology

Canada
(Quebec) 0.05

NAS
RR

2

Linh et al., 2021 WNN *
ANN SLP, SST

Max
monthly

discharge
(MAD)

3 stations,
37 years Acta Geophysica

Iran
(Golestan

Dam,
Madarsoo)

0.68 NAS

Allahbakhshian-
Farsani et al.,

2020

SVR *
MARS
BRT
PPR
NLR

A, AA,
AMP,
MXP,

NDP, CC,
CR, TC,
P, SL,

DD, SS,
MBS, PF,
SDT, RA,
BL, FLA,

FOR,
RLA, DA,
WA, EL,
MXEL,
MNEL

Q
54

stations,
19 years

Water Resources
Management

Iran
(Karun and

Karkhe River)
50.70

NAS
RR

6

Kordrostami et
al., 2020 ANN

A, AEV,
AMP,

FOR, I,
SS, SF
and DD

Q

88
stations,

25–82
years

Geosciences
Australia

(New South
Wales)

NA RRMS

Haddad and
Rahman, 2020

MDS-SVR *
MDS-BGLSR

A, AEV,
SF, DD,

SS, FOR,
I and
AMP

Q

202
stations,

25–82
years

Natural Hazards

Australia
(New South
Wales and
Victoria)

NA RRM

Vafakhah and
Khosrobeigi
Bozchaloei,

2020

SVR *
ANN
NLR

A, AA,
AEV, P,
MBS,

MXEL,
MNEL,
EL, SL,
DD, SS,
AMP, T,

PF, RLA,
BL, GA,

RA

Q
33

Stations,
20 years

Water Resources
Management

Iran
(Namak Lake) 0.11 NAS

RRMS

Ghaderi et al.,
2019

SVM *
ANFIS
GEP

A, P,
MBS, EL,

L, SL,
SS, DD,
MXSO,
FF, L,

CR, CC,
AMP,

MXP, BL,
FOR

Q
47

stations,
21 years

Arabian Journal of
Geosciences

Iran
(South-west) 239.94 NAS

Sharifi
Garmdareh et

al., 2018

ANFIS *
SVR
ANN
NLR

A, AEV,
P, DD,
MXEL,
MNEL,

MBS, EL,
SL, SS,
T, AMP,

Q
55

stations,
20 years

Hydrological
Sciences Journal

Iran
(Namak Lake) 8.40 NAS
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Reference Author, Year Model
Predictor
Variables
(Inputs)

Model
Output

Catchment,
Year Journal Country

(Catchment)
RMSE
*

RRMS
*

Aziz et al., 2017
ANN *
GEP *
QRT

A, AEV,
AMP, SS,

I
Q

452
stations,

25–75
years

Stochastic
Environmental
Research and

Risk Assessment

Australia
(New South

Wales,
Victoria,

Queensland
and

Tasmania)

Na

NA
AN

smal
=

NA
GE

large
0

Ouali et al.,
2017

NLCCA-GAM *
NLCCA-EANN

CCA-ANN
CCA-EANN

NLCCA-ANN
NLCCA-GAM/

STPW

A, MBS,
FAL,
AMP,
AMD

Q

151, 204
and 69

stations,
≥15 years

Journal of
Advances in

Modeling Earth
Systems

Canada and
United states

(Quebec,
Arkansas,

Texas)

NA RRMS
NAS

Gizaw and Gan,
2016

SVR *
ANN

A, SS,
SL, TC, I,

AMP
Q

26 and 23
stations,
≥15 years

Journal of
Hydrology

Canada
(British

Columbia,
Ontario)

46.2

Aziz et al., 2016

ANN *
GAANN
CANFIS

GEP

A, AEV, I,
AMP, SS, Q

452
Stations,

25–75
years

Artificial Neural
Network Modelling

(Book)

Australia
(New South

Wales,
Victoria,

Queensland
and

Tasmania)

NA NAS

Kumar et al.,
2015

FIS *
ANN

L-moments (PE3)

A, AMP,
SDT, EL Q

17
stations,

15–29
years

Water Resources
Management

India
(Godavari

river)
2.32

Aziz et al., 2015 GAANN
BPANN A, I Q

452
stations,

25–75
years

Natural Hazards

Australia
(New South

Wales,
Victoria,

Queensland,
and

Tasmania)

NA

Bozchaloei and
Vafakhah, 2015

ANFIS *
ANN
NLR

A, AA,
AEV, P,
MBS,

MXEL,
MNEL,
EL, SL,
DD, SS,
AMP, T,

PF, RLA,
BL, GA,

RA

Q
33

stations,
20 years

Journal of
Hydrologic

Engineering

Iran
(Namak Lake) 0.008 NAS

Durocher et al.,
2015 PPR *

A, SL,
SS, MBS,

FOR,
FAL,
AMP,

AMPS,
AMPL,
MLS,
AMD

Q
151

stations,
≥15 years

Journal of
Hydrometeorology

Canada
(Quebec) NA RRMS

Alobaidi et al.,
2015

G-EANN *
EANN

A, MBS,
FAL,
AMD,
AMP

Q
151

stations,
≥15 years

Advances in
Water Resources

Canada
(Quebec) NA RRMS

Aziz et al., 2014 ANN *
QRT

A, AEV,
AMP, SS,

I
Q

452
stations,

25–75
years

Stochastic
Environmental
Research and

Risk Assessment

Australia
(New South

Wales,
Victoria,

Queensland,
Tasmania)

NA

Aziz et al., 2013 BGLS-QRT-ROI *
CANFIS A and I Q

452
stations,

25–75
years

Journal of
Hydrological
Environment
Resources

Australia
(New South

Wales,
Victoria,

Queensland,
and

Tasmania)

NA
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Reference Author, Year Model
Predictor
Variables
(Inputs)

Model
Output

Catchment,
Year Journal Country

(Catchment)
RMSE
*

RRMS
*

Seckin et al.,
2013

MLP *
L-moment

RBNN
GRNN
MLR

MNLR

A, EL,
LAT,
LON,

and RP

Q

13
stations,

10-39
years

Water Resources
Management

Turkey
(East

Mediterranean
River)

0.173

Seckin and
Guven, 2012

GEP *
LGP
LR

A, EL,
LAT,
LON,

and RP

Q
543

stations,
≥15 years

Water Resource
Management

Turkey
(Rivers

across the
country)

NA

Singh et al.,
2010

BNN *
M5

A, MRD,
AMP, RP,
MBS and

FOR

Q

93
stations,

10–83
years

Water Resources
Management

India
(Catchments
across the
country)

NA

Ouarda and
Shu, 2009

ANN *
Multiple regression

model

A, FAL,
FOR,
AMD,

AMPL,
NT27,

CN

Q
134

stations,
≥10 years

Water Resources
Research

Canada
(Quebec) 27.33

NASH
RR

3

Shu and
Ouarda, 2008

ANFIS *
ANN
NLR

NLR-R

A, MBS,
FAL,
AMP,
AMD,
HDB,
TOPO

Q
151

stations-
≥15 years

Journal of
Hydrology

Canada
(Quebec) 316 NAS

RRM

Srinivas et al.,
2008

SOFM *
CCA

Regional
regression

A, SS,
SRC,
SSC,

AMP, SL,
EL, FOR,

R24h

Q
11

stations,
6–42 years

Journal of
Hydrology

United states
(Indiana) NA RR

0

Shu and
Ouarda, 2007

ANN *
ANN-CCA

A, AMD,
AMP,
FAL,
MBS

Q
151

stations,
≥15 year

Water Resources
Research

Canada
(Quebec) 0.053 NAS

RRM

Dawson et al.,
2006

ANN *
MLR

A, AMP,
L, DA, IF Q    

850
stations,
20 years

Journal of
Hydrology

United
kingdom

(Catchment
across the

UK)

NA

Jingyi and Hall,
2004

ANN *
Cluster analysis

A, AMP,
MXP, SL,
SS, EL,
GFI and

PLN

Q
86 stations

15–36
years

Journal of
Hydrology

China
(Jiangxi and
Fujian, Gan
and Ming

rivers)

47

(Shu and Burn,
2004)

ANN *
Ordinary least

squares regression
(REG_OLS)
Non-linear
regression

(REG_NONLINEAR)

A, AMP,
SDT,
FARL

Q
404

stations
29 years

Water Resources
Management

United
Kingdom
(England,

Scotland, and
Wales)

NA

Seckin and Guven  used data from 543 catchments in Turkey to compare two genetic programming-based techniques

(GEP and LGP) with the linear regression (LR). They found that GEP was the best operating method, closely followed by

LGP and that both soft programming methods outperformed the LR method. Aziz et al.  evaluated the developed RFFA

method, a combination of GA and ANN called GAANN, using data from 452 stations in Australia. They also compared the

results of their proposed method to BPANN and noted that both methods produced similar results. When the results were

compared to QRT, they concluded that the proposed AI-based RFFA could be a viable alternative to the traditional QRT

method in Australia.
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