

Sustainable Preservation Approaches of Whey cheeses

Subjects: **Food Science & Technology**

Contributor: Thomas Bintsis , Photis Papademas

Whey cheeses have been produced from the very early steps of cheesemaking practices as a sustainable way to utilize whey, which is the main by-product of cheesemaking.

whey cheese

sustainable preservation

bio-preservation

functional whey cheeses

1. Modified Atmosphere Packaging

The use of effective and sustainable methods for the preservation and safety of whey cheeses is necessary to control cross-contamination of fresh whey cheeses throughout their storage. The increased consumer demand for fresh, preservative-free foods has led to extended research on advances in cheese preservation focusing on 'clean labels' [1]. The use of modified atmosphere packaging (MAP) as a technique to improve product' safety and extend the shelf life satisfies the chemical preservative-free strategies for various foods [2]; MAP is widely used as a storage method, extending the shelf life and improving the appearance of several foods. The potential of MAP and active packaging for extending shelf life of dairy products, including cheese, has been demonstrated [3][4][5].

Several MAP conditions were used to assess the effect of MAP on the characteristics, that is, free fatty acids, lactose, lactic acid, moisture, pH, and texture of whey cheeses [6][7][8][9][10][11][12][13][14][15][16]. The MAP conditions and the best practice and/or effect on whey cheeses is presented in **Table 1**. Different mixtures have been applied in different whey cheeses; in most studies, a specific mixture of gases provided an extension in the shelf life.

Table 1. Modified atmosphere packaging (MAP) conditions and the best practice and/or effect on whey cheeses.

Cheese	MAP Conditions Used	Best Practice/Effect	Reference
Anthotyros	40% CO ₂ /55% N ₂ /5% O ₂ , 60% CO ₂ /40% N ₂ and 50% CO ₂ /50% N ₂	60% CO ₂ /40% N ₂ and 50% CO ₂ /50% N ₂ mixtures proved to be most effective for inhibiting total mesophilic microorganisms and <i>E. coli</i>	[10]
Anthotyros	30% CO ₂ /70% N ₂ and 70% CO ₂ /30% N ₂	The use of MAP conditions 70% CO ₂ /30% N ₂ extended the shelf-life of fresh cheese for 20 days	[11]
Anthotyros	40% CO ₂ /60% N ₂ and basil essential oil (0.4% v/w)	Extend the shelf life by approximately 10–12 days compared to aerobic packaging	[12]

Cheese	MAP Conditions Used	Best Practice/Effect	Reference
Lor	40% CO ₂ /60% N ₂ , 60% CO ₂ /40% N ₂ and 70% CO ₂ /30% N ₂	60% and 70% CO ₂ were the most effective mixture for inhibition of growth of micro-organisms	[13]
Lor	80% CO ₂ /20% N ₂ and 60% CO ₂ /40% N ₂	80% CO ₂ /20% N ₂ was the most effective for inhibiting growth of micro-organisms	[14]
Myzithra Kalathaki	20% CO ₂ /80% N ₂ , 40% CO ₂ /60% N ₂ and 60% CO ₂ /40% N ₂	40% CO ₂ /60% N ₂ was the most effective treatment for the inhibition of psychrotrophs in Myzithra cheese until days 40; control samples were sensorily unacceptable after 10–12 days of storage	[17]
Requeijao	100% CO ₂ , 100% N ₂ and 50% CO ₂ /50% N ₂	CO ₂ alone ensured more consistent cheese composition until 15 days of storage and provided protection against lipolysis	[15]
Ricotta fresca	30% CO ₂ /70% N ₂ and 100% N ₂ [16]	No evidence that MAP conditions used in Sardinian dairies allowed to extend the shelf life to 21 days	[6]

giotensin-converting-enzyme (ACE)-inhibitory activities in Requeson. Di Pierro et al. [18] studied the application of chitosan/whey protein film as active coating in combination with 40% CO₂/60% N₂ MAP conditions to extend the shelf life of Ricotta cheese; the treatment reduced the viable numbers of mesophilic and psychrotrophic bacteria and delayed the development of undesirable acidity, better maintained the texture, and did not modify the sensory characteristics.

2. Addition of Herbs and/or Plant Extracts

There are a number of studies in the literature on the addition of various herbs and/or plant extracts and their potential use in combination with different packaging materials to extend the shelf life of whey cheeses [16][18][19][20][21][22][23][24]. Black cumin, thyme, and rosemary are frequently added to cheeses because of their sensory and antioxidant properties [19][20]. Akpinar et al. [19] studied whey cheeses packaged in goat-skin bags used for the storage of traditional cheeses with a long shelf life (semi-hard and hard cheeses) and alternatively studied cheeses in artificial casings. In addition to different packaging materials, the potential usage of different plants (black cumin, thyme, and rosemary) in Lor cheese production was evaluated.

Christaki et al. [24] studied the effect of oregano essential oil and extracts on two Greek whey cheeses. The authors evaluated the feasibility of employing oregano essential oil and extracts in whey cheese to control fungal contamination that causes cheese spoilage and important economic losses and reported that the combination of oregano essential oil and extracts produced nanoemulsions with potent antioxidant and antifungal activity against *Penicillium expansum* in vitro.

3. Bio-Preservation

The use of natural antimicrobial compounds from a wide variety of natural sources, or protective LAB cultures, i.e., bio-preservation, has been studied extensively [25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45]. Bio-preservation is of high interest due to its ecological sustainability and consumer friendly nature [32]. Unlike artificially synthesized chemical preservatives that have toxic effects over long-term usage, bio-preservatives offer little or no harmful health effects [37][38][39][40][41][42]. Nisin, a bacteriocin produced by strains of *Lactococcus lactis* subsp. *lactis* has been used as a natural preservative to extend the self-life of certain dairy products [24][33]. Nisin inhibits Gram-positive bacteria, including *L. monocytogenes* and *B. cereus* and outgrows the spores of members of the genus *Bacillus* and *Clostridium* [26][33]. Wu et al. [43] concluded that the combined use of nisin with other antibacterial methods showed more advantageous activities against *L. monocytogenes* than single use.

Samelis et al. [34] investigated the use of nisin as a bio-preserved to control *L. monocytogenes* introduced post-processing on Anthotyros stored in refrigerated storage in vacuum packages for up to 45 days; they reported that this treatment suppressed *L. monocytogenes* growth below the inoculation level for 30 and 45 days [34]. Interestingly, nisin resulted in a switch in the natural spoilage flora of Anthotyros from Gram-positive to Gram-negative [34]. Aspri et al. [35] applied a bacteriocin-producing *Enterococcus faecium* isolated from donkey milk in the bio-control of *L. monocytogenes* in fresh whey cheese. Spanu et al. [36] investigated bio-preservatives to control the growth of spoilage microorganism, that is *Pseudomonas* spp., on the surface of MAP-packed Ricotta fresca during refrigerated storage and *Carnobacterium* spp. inoculated on the surface of the finished product; they reported promising results in controlling contamination of Ricotta fresca with certain spoilage microorganisms. In another study, *Carnobacterium* spp. significantly reduced the growth of *Pseudomonas* spp. at 1.28 log and 0.83 log after 14 and 21 days of refrigerated storage, respectively [37]. Fernández et al. [42] studied the effect of nisin alone and in combination with Microgard, that is bacteriocin-like inhibitory products, on the microbial flora of Ricotta cheese.

Bacteriocin production in situ from several LAB and its impact on food preservation have been examined; thermophilin T, a bacteriocin produced by *Streptococcus thermophilus* ACA-DC 0040, had an inhibitory activity against a large number of related LAB as well as *Clostridium* spp. [44]. Kamarides et al. [45] evaluated the effect of thermophilin T, previously produced in fermented milk, on the microbiological and physicochemical characteristics of Myzithra cheese.

More recently, Sameli et al. [40] studied the effect of an enterocin A-B-P crude extract on the spoilage microbiota in fresh Anthotyros whey cheeses stored at refrigeration temperatures in vacuum for 40 days; *Pseudomonas* spp., *Aeromonas* spp., *Hafnia* spp., and *Serratia* spp. grew faster than LAB during early storage. Later, LAB outgrew the Gram-negative bacteria and prevailed by mid- to late storage in all cheese batches, causing an acidification effect [40]. Sameli and Samelis [25] assessed the growth and bio-control of inoculated *L. monocytogenes* in Anthotyros whey cheeses, without or with 5% of a crude enterocin A-B-P extract during storage at 4° C. From day 15 to the sell-by date (days 35–40), *L. monocytogenes* growth ceased, and progressively, the populations of the pathogen declined in most cheeses; this was due to an unmonitored, batch-dependent natural acidification by spoilage lactic acid bacteria, predominantly *Leuconostoc mesenteroides*, which reduced the cheese pH to 5.5 and finally to a value of 5.0 [25].

4. Novel Treatments for Extending the Shelf Life

During the last 10 years, a number of novel treatments have been applied to whey cheeses in order to extend the shelf life and to enhance their functional and sensory characteristics. Duarte et al. [46] proposed an alternative to refrigerated storage technology for Requeijão; they stored the cheese under 100 MPa hyperbaric storage at variable room temperature, and total aerobic mesophiles and *Enterobacteriaceae* growth was inhibited. For LAB, yeasts, and molds, hyperbaric storage showed an additional microbial inactivation effect. This technology is an environmentally friendlier technology, with a carbon footprint estimated to be about 26-fold lower compared to refrigerated storage [46]. The possibilities of using the continuous type of UV-C light on the surface of Lor cheese was studied, and it was found that the application of UV-C light (1.617, 4.018, and 36.832 kJ/m²) to the cheese surface allowed delaying mold growth during storage; however, extreme doses could induce lipid and protein oxidation reactions, leading to quality deterioration [47].

Two novel food preservation technologies were applied to Ricotta, that is pulsed light [48] and plasma treatment [49]. The authors concluded that both methods could be used to extend the shelf life of Ricotta cheese. To extend the shelf life of buffalo Ricotta cheese, a process was assessed that included a second heat treatment followed by homogenization and hot packaging. In another study, Tripaldi et al. [50] reported that homogenized buffalo Ricotta cheese had a longer shelf life than traditional Ricotta cheese, although the process could be optimized to reduce the total bacterial load during storage.

References

1. Moula Ali, A.M.; Sant' Ana, A.S.; Bavisetty, S.C.B. Sustainable preservation of cheese: Advanced technologies, physicochemical properties and sensory attributes. *Trends Food Sci. Technol.* 2022, 129, 306–326.
2. Phillips, C.A. Modified atmosphere packaging and its effects on the microbiological quality and safety of produce. A review. *Int J. Food Sci. Technol.* 1999, 31, 463–479.
3. Mortensen, G.; Sørensen, J.; Stapelfeldt, H. Effect of modified atmosphere packaging and storage conditions on photooxidation of sliced Havarti cheese. *Eur. Food Res. Technol.* 2003, 216, 57–62.
4. Floros, J.D.; Nielsen, P.V.; Farkas, J.K. Advances in modified atmosphere and active packaging with applications in the dairy industry. *Bull. IDF* 2000, 346, 22–28.
5. Khoshgozaran, S.; Azizi, M.H.; Bagheripoor-Fallah, N. Evaluating the effect of modified atmosphere packaging on cheese characteristics: A review. *Dairy Sci. Technol.* 2011, 92, 1–2.
6. Pala, C.; Scarano, C.; Venusti, M.; Sardo, D.; Casti, D.; Cossu, F.; Lamon, S.; Spanu, V.; Ibba, M.; Marras, M. Shelf life evaluation of ricotta fresca sheep cheese in modified atmosphere packaging.

Ital. J. Food Saf. 2016, 5, 5502.

7. Feeney, E.L.; Lamichhane, P.; Sheehan, J.J. The cheese matrix: Understanding the impact of cheese structure on aspects of cardiovascular health—A food science and a human nutrition perspective. *Int. J. Dairy Technol.* 2021, 74, 656–670.

8. Pintado, M.E.; Malcata, F.X. Characterization of whey cheese packaged under vacuum. *J. Food Prot.* 2000, 63, 216–221.

9. Pintado, M.E.; Malcata, F.X. The effect of modified atmosphere packaging on the microbial ecology in Requeijao, a Portuguese whey cheese. *J. Food Process. Preserv.* 2000, 24, 107–124.

10. Arvanitoyannis, I.S.; Kargaki, G.K.; Hadjichristodoulou, C. Effect of three MAP compositions on the physical and microbiological properties of a low fat Greek cheese known as “Anthotyros”. *Anaerobe* 2011, 17, 295–297.

11. Papaioannou, G.; Chouliara, I.; Karatapanis, A.E.; Kontominas, M.G.; Savvaidis, I.N. Shelf-life of a Greek whey cheese under modified atmosphere packaging. *Int. Dairy J.* 2007, 17, 358–364.

12. Tsiraki, M.I.; Savvaidis, I.N. Effect of packaging and basil essential oil on the quality characteristics of whey cheese “Anthotyros”. *Food Bioprocess Technol.* 2013, 6, 124–132.

13. Temiz, H.; Aykut, U.; Hursit, A.K. Shelf life of Turkish whey cheese (Lor) under modified atmosphere packaging. *Int. J. Dairy Technol.* 2009, 62, 378–386.

14. Irkin, R. Shelf-life of unsalted and light ‘Lor’ whey cheese stored under various packaging conditions: Microbiological and sensory attributes. *J. Food Process. Preserv.* 2011, 35, 163–178.

15. Pintado, M.E.; Malcata, F.X. Optimization of modified atmosphere packaging with respect to physicochemical characteristics of Requeijao. *Food Res. Int.* 2000, 33, 821–832.

16. Ramírez-Rivas, I.K.; Gutiérrez-Méndez, N.; Rentería-Monterrubio, A.L.; Sánchez-Vega, R.; Tirado-Gallegos, J.M.; Santellano-Estrada, E.; Arevalos-Sánchez, M.M.; Chávez-Martínez, A. Effect of packaging and salt content and type on antioxidant and ACE-inhibitory activities in Requeson cheese. *Foods* 2022, 11, 1264.

17. Dermiki, M.; Ntzimani, A.; Badeka, A.; Savvaidis, I.N.; Kontominas, M.G. Shelf-life extension and quality attributes of the whey cheese “Myzithra Kalathaki” using modified atmosphere packaging. *LWT—Food Sci. Technol.* 2008, 41, 284–294.

18. Di Pierro, P.; Sorrentino, A.; Mariniello, L.; Giosafatto, C.V.L.; Porta, R. Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. *LWT—Food Sci. Technol.* 2011, 44, 2324–2327.

19. Akpinar, A.; Yerlikaya, O.; Akan Karagozlu, C.; Kinik, O.; Uysal, H.R. The effect of packaging materials on physicochemical, microbiological, and sensorial properties of Turkish whey (Lor) cheese with some plants. *J. Food Process. Preserv.* 2022, 46, e17060.

20. Staszewski, M.; Jagus, R. Natural antimicrobials: Effect of MicrogardTM and nisin against *Listeria innocua* in liquid cheese whey. *Int. Dairy J.* 2008, 18, 255–259.
21. Kaptan, B.; Sivri, G.T. Products dairy in plants aromatic and medicinal of utilization. *J. Adv. Plant Sci.* 2018, 1, 205.
22. Ritota, M.; Manzi, P. Natural Preservatives from Plant in Cheese Making. *Animals* 2020, 10, 749.
23. Khorshidian, N.; Yousefi, M.; Khanniri, E.; Mortazavian, A.M. Potential application of essential oils as antimicrobial preservatives in cheese. *Inn. Food Sci. Emerg. Technol.* 2018, 45, 62–72.
24. Christaki, S.; Moschakis, T.; Hatzikamari, M.; Mourtzinos, I. Nanoemulsions of oregano essential oil and green extracts: Characterization and application in whey cheese. *Food Control* 2022, 14, 109190.
25. Sameli, N.; Samelis, J. Growth and biocontrol of *Listeria monocytogenes* in Greek Anthotyros whey cheese without or with a crude Enterocin A-B-P extract: Interactive effects of the native spoilage microbiota during vacuum-packed storage at 4 °C. *Foods* 2022, 11, 334.
26. Davies, E.A.; Bevis, H.E.; Delves-Broughton, J. The use of bacteriocin nisin, as a preservative in ricotta-type cheeses to control the food-borne pathogen *Listeria monocytogenes*. *Lett. Appl. Microbiol.* 1997, 24, 343–346.
27. Ehsani, A.; Rezaeiyan, A.; Hashemi, M.; Aminzare, M.; Jannat, B.; Afshari, A. Antibacterial activity and sensory properties of *Heracleum persicum* essential oil, nisin, and *Lactobacillus acidophilus* against *Listeria monocytogenes* in cheese. *Vet World* 2019, 12, 90–96.
28. Ibarra-Sánchez, L.A.; El-Haddad, N.; Mahmoud, D.; Miller, M.J.; Karam, L. Invited review: Advances in nisin use for preservation of dairy products. *J. Dairy Sci.* 2020, 103, 2041–2052.
29. Ibarra-Sánchez, L.A.; Van Tassell, M.L.; Miller, M.J. Antimicrobial behavior of phage endolysin PlyP100 and its synergy with nisin to control *Listeria monocytogenes* in Queso Fresco. *Food Microbiol.* 2018, 72, 128–134.
30. Divsalar, E.; Tajik, H.; Moradi, M.; Forough, M.; Lotfi, M.; Kuswandi, B. Characterization of cellulosic paper coated with chitosan-zinc oxide nanocomposite containing nisin and its application in packaging of UF cheese. *Int. J. Biol. Macromol.* 2018, 109, 1311–1318.
31. Hales, B.R.; Walsh, M.K.; Bastarrachea, L.J. Synergistic effect of high-intensity ultrasound, UV-A light, and natural preservatives on microbial inactivation in milk. *J. Food Process. Preserv.* 2022, 46, e1639.
32. Dwivedi, S.; Prajapati, P.; Vyas, N.; Malviya, S.; Kharia, A. A review on food preservation: Methods, harmful effects and better alternatives. *Asian J. Pharm. Pharmacol.* 2017, 3, 193–199.
33. Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of bacteriocins and protective cultures in dairy food preservation. *Front. Microbiol.* 2018, 9, 594.

34. Samelis, J.; Kakouri, A.; Rogga, K.J.; Savvaidis, I.N.; Kontominas, M.G. Nisin treatments to control *Listeria monocytogenes* post processing contamination on Anthotyros, a traditional Greek whey cheese, stored at 4 °C in vacuum packages. *Food Microbiol.* 2003, 20, 661–669.

35. Aspri, M.; O'Connor, P.M.; Field, D.; Cotter, P.D.; Ross, P.; Hill, C.; Papademas, P. Application of bacteriocin-producing *Enterococcus faecium* isolated from donkey milk, in the bio-control of *Listeria monocytogenes* in fresh whey cheese. *Int. Dairy J.* 2017, 73, 1–9.

36. Spanu, C.; Scarano, C.; Piras, F.; Spanu, V.; Pala, C.; Casti, D.; Lamon, S.; Cossu, F.; Ibba, M.; Nieddu, G. Testing commercial biopreservative against spoilage microorganisms in MAP packed Ricotta fresca cheese. *Food Microbiol.* 2017, 66, 72–76.

37. Spanu, C.; Piras, F.; Mocci, A.M.; Nieddu, G.; De Santis, E.P.L.; Scarano, C. Use of *Carnobacterium* spp protective culture in MAP packed Ricotta fresca cheese to control *Pseudomonas* spp. *Food Microbiol.* 2018, 74, 50–56.

38. Gould, G.W. Industry perspectives on the use of natural antimicrobials and inhibitors for food applications. *J. Food Prot.* 1996, 59, 82–86.

39. Tiwari, B.K.; Valdramidis, V.P.; O'Donnell, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Applications of natural antimicrobials for food preservation. *J. Agric. Food Chem.* 2009, 57, 5987–6000.

40. Sameli, N.; Sioziou, E.; Bosnea, L.; Kakouri, A.; Samelis, J. Assessment of the spoilage microbiota during refrigerated (4 °C) vacuum-packed storage of fresh Greek Anthotyros whey cheese without or with a crude enterocin A-B-P-containing extract. *Foods* 2021, 10, 2946.

41. Udayakumar, S.; Rasika, D.M.D.; Priyashantha, H.; Vidanarachchi, J.K.; Ranadheera, C.S. Probiotics and Beneficial Microorganisms in Biopreservation of Plant-Based Foods and Beverages. *Appl. Sci.* 2022, 12, 11737.

42. Fernández, M.V.; Jagus, R.J.; Mugliaroli, S.L. Effect of combined natural antimicrobials on spoilage microorganisms and *Listeria innocua* in a whey cheese “Ricotta”. *Food Bioprocess Technol.* 2014, 7, 2528–2537.

43. Wu, M.; Ma, Y.; Dou, X.; Aslam, M.Z.; Liu, Y.; Xia, X.; Yang, S.; Wang, X.; Qin, X.; Hirata, T.; et al. A review of potential antibacterial activities of nisin against *Listeria monocytogenes*: The combined use of nisin shows more advantages than single use. *Food Res. Int.* 2023, 164, 112363.

44. Aktypis, A.; Kalantzopoulos, G.; Huis in't Veld, J.H.J.; Ten brink, B. Purification and characterization of thermophilin T, a novel bacteriocin produced by *Streptococcus thermophilus* ACA-DC 0040. *J. Appl. Microbiol.* 1998, 84, 568–576.

45. Kamarides, S.; Aktypis, A.; Koronios, G.; Massouras, T.; Papanikolaou, S. Effect of 'in situ' produced bacteriocin thermophilin T on the microbiological and physicochemical characteristics of

Myzithra whey cheese. *Int. J. Dairy Technol.* 2018, 71, 213–222.

46. Duarte, R.; Moreira, S.A.; Fernandes, P.A.R.; Santos, D.; Inacio, R.S.; Alves, S.P.; Bessa, R.J.B.; Saraiva, J.A. Whey cheese longer shelf-life achievement at variable uncontrolled room temperature and comparison to refrigeration. *J. Food Process Preserv.* 2017, 41, e13307.

47. Urgu-Ozturk, M. Possibilities of using the continuous type of UV light on the surface of Ior (whey) cheese: Impacts on mould growth, oxidative stability, sensory and colour attributes during storage. *J. Dairy Res.* 2022, 89, 335–341.

48. Ricciardi, F.E.; Plazzotta, S.; Conte, A.; Manzocco, L. Effect of pulsed light on microbial inactivation, sensory properties and protein structure of fresh ricotta cheese. *LWT Food Sci. Technol.* 2021, 139, 110556.

49. Ricciardi, E.F.; del Nobile, M.A.; Conte, A.; Fracassi, F.; Sardella, E. Effects of plasma treatments applied to fresh ricotta cheese. *Innov. Food Sci. Emerg. Technol.* 2022, 76, 102935.

50. Tripaldi, C.; Rinaldi, S.; Palocci, G.; Di Giovanni, S.; Campagna, M.C.; Di Russo, C.; Zottola, T. Chemical and microbiological characteristics of homogenized Ricotta cheese produced from buffalo whey. *Ital. J. Food Sci.* 2020, 32, 292–309.

Retrieved from <https://encyclopedia.pub/entry/history/show/97352>