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Oxidative stress refers to the imbalance between the production of reactive oxygen species (ROS) and the endogenous

antioxidant defense system. Its involvement in cell senescence, apoptosis, and series diseases has been demonstrated.

Advances in carcinogenic research have revealed oxidative stress as a pivotal pathophysiological pathway in

tumorigenesis and to be involved in lung cancer, glioma, hepatocellular carcinoma, leukemia, and so on.
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1. Introduction

Recently, the relationship between oxidative stress and cancer has become a hot issue. Oxidative stress is closely related

to tumor development and can interfere with tumor cell fate through a complex regulatory network. Considering that a

major challenge in cancer treatment lies in the diverse mechanisms of tumor development and evasion, targeting

oxidative stress may be a comprehensive approach compared with some single efficacy targets. ROS, as one of the

normal cellular metabolites, exists in various forms, such as radicals possessing a single unpaired reactive electron in the

outermost orbital, including superoxide anion (O ), hydroxyl radical (OH ), carbonate radical anion (CO ), nitrogen

dioxide (NO ), alkoxyl/alkyl peroxyl (RO /ROO ), etc., and non-radicals lacking unpaired electrons and characterized as

two-electron oxidants, including hydrogen peroxide (H O ), nitric oxide (NO), hypochlorous acid (HOCl), etc. . With an

intensive oxidative capacity, ROS can attack nucleic acids, proteins, and lipids, resulting in DNA damage, lipid

peroxidation , and altering protein post-translational modification, represented by redox modification  and

phosphorylation . It is known that ROS originates from two main pathways: an endogenous pathway with mitochondria

as the primary source, containing the endoplasmic reticulum, NADPH hydrogenase, and catalase, among which NOXs

are considered as the central enzyme family for ROS production ; and an exogenous pathway including external factors

such as radiation, chemotherapy, inflammatory factors, and air pollution . The basic relationship between oxidative

stress and cancer has been clearly demonstrated. Relatively high ROS levels can induce DNA mutations and pro-

oncogenic signaling pathways to promote tumor formation, while excessive ROS levels can induce tumor cell death .

This implies that early tumor formation can be prevented by removing relatively high levels of ROS, or cancer cells can be

killed explicitly by promoting the production of excessive levels of ROS in cancer cells.

2. Oxidative Stress and Tumorigenesis

According to the hallmarks of cancer concluded by Douglas Hanahan and Robert Weinberg in 2000 and 2011, genome

instability and mutation are enabling characteristics of cancer . The mutability of cancer is achieved through internal

factors such as spontaneous mutation accumulation and external factors such as the environment and radiation . ROS,

as cellular intermediates of both factors, will directly attack DNA, triggering various forms of DNA damage, such as DNA

strand breaks, which affect the expression levels of key genes such as proto-oncogenes, oncogenes, and DNA damage

repair-related genes, and promotes tumorigenesis . In addition, it has been elaborated that ROS induces mutagenic

break repair and the SOS response via damaging bases in DNA, then pausing the replisome and allowing the critical

switch from high fidelity to error-prone DNA polymerases, which provoke more carcinogenic mutation . It has been

shown that ROS can affect tumorigenesis and transformation by oxidizing cysteine residues, which activates the three

most common oncogenic switch genes in human cancers, HRAS, NRAS, and KRAS . Mitochondrial ROS (mtROS) had

a critical role in tumorigenesis through the ERK-MAPK signaling pathway in a mouse model of oncogenic Kras-mediated

lung cancer . Also, in Kras-driven mouse models of pancreatic cancer, ROS inhibition using NAC and MitoQ was found

to significantly reduce the development and progression of precancerous lesions .

Epigenetic regulation is another vital mechanism altering expression of tumor-related genes . It was found that ROS, as

a catalyst for DNA methylation, is extensively involved in the regulation of aberrant hypermethylation and overall

hypomethylation levels in the promoter region of tumor suppressor genes (TSG) such as CDX1 through upregulation of
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DNA methyltransferase (DNMT) expression or the formation of DNMT-containing complexes . Simultaneously, ROS

directly induced LINE-1 hypomethylation and RUNX3 promoter hypermethylation in bladder cancer cell lines, uroepithelial

cell carcinogenesis , and hepatocellular carcinoma (HCC), making ROS-induced RUNX3 hypermethylation promising

as a practical and valuable biomarker for diagnosis  (Figure 1).

Figure 1. Oxidative stress plays a pivotal role in tumorigenesis. (Created with BioRender.com).

3. Oxidative Stress and Tumor Metabolism

Tumor cell metabolic reprogramming is a crucial pathway in ROS-induced cancer cell development, and its primary role is

to maintain tumor cell adaptive capacity . As early as the 1920s, the German biochemist Warburg pointed out that

tumor cells had higher ROS levels than normal cells because of increased aerobic glycolysis (Warburg effect) in cancer

cells . The inhibition of glycolysis directly leads to the death of colon tumorigenic cells (HCT116) and lymphoma cells

(Raji) . In addition to a preference for aerobic glycolysis and higher levels of ROS, tumor cell metabolic reprogramming

is also characterized by enhanced lipid synthesis, abnormal amino acid metabolism, increased lactic acid production, and

alteration of the antioxidant system. Cancer cells also possess more powerful antioxidant defenses in contrast to its

multitudes of ROS . Intensive ROS scavenging, including peroxiredoxin 1 (PRDX1) , SOD2 , CAT, GSH-PXs,

thioredoxins (TRXs), and GSH, can be upregulated by the activation of TNFα, Nrf2, HIF1α, AMPK, and PGC1α, protecting

cancer cells from damage and subsequent cell death . Furthermore, NADPH, which is perceived as a pivot in the

antioxidant system, with the capacity of renewing reduced glutathione (GSH) and thioredoxin (TRX), is drastically

produced in cancer cells via fostering the pentose phosphate pathway, malic enzymes, one-carbon metabolism, etc. .

As research continues, mutual reinforcing between metabolic reprogramming and oxidative stress in cancer cells is

gradually being uncovered. It has been suggested that PML, as an ROS sensor, is located in both the nucleus and MAM

where it regulates the Warburg effect and metabolic reprogramming related to the division, differentiation, and chemical

sensitivity of cancer cells . Gemcitabine-induced ROS activates KRAS/AMPK signaling, inducing metabolic

reprogramming, and enhances stem cell-like properties in pancreatic cancer . Furthermore, sirtuin, including the

SIRT1-SIRT3 axis, a kind of NAD -consuming enzyme regarded as a stress responder, has been demonstrated to trigger

metabolic reconstitution and affects the ROS level by deacetylating and activating metabolic enzymes and signaling

molecules such as FOXO3a, PGC-1α, TFAM, Drp1, mTOR, and PINK1/Parkin . In addition, ROS can activate

NF-κB , NRF2 , and KHK-A  to reduce ROS production. Furthermore, ROS can directly regulate the function of

metabolic enzymes through redox modification, which has been demonstrated in key redox-sensitive residues such as

cysteine oxidation/S-sulfenylation/S-glutathionylation/S-nitrosylation and tyrosine nitration . For example, oxidative

stress contributes to pancreatic ductal adenocarcinoma via inhibiting the arginine methylation of malate dehydrogenase 1

(MDH1) .

4. Oxidative Stress and Tumor Cell Proliferation

The most important feature of tumor cells is uncontrolled proliferation and growth, and oxidative stress based on ROS

levels will directly affect their growth state . That is, the ability of tumor cells to adapt to ROS is crucial for their

proliferation . On the one hand, ROS plays an important role in promoting the regulation of tumor proliferation. It was

found that the survival rate of pancreatic cancer cells significantly increased after stimulation with high levels of ROS

triggered by 5-lipoxygenase (5-LO) and NADPH oxidase 4 (Nox4) . Also, oxidative stress-mediated mitogen-activated

protein kinase phosphatase (MKP-3) deficiency is significantly correlated with enhanced tumorigenicity in ovarian cancer
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cells . In contrast, ROS, as a secondary messenger molecule, can directly mediate the activation of PDGF , EGF
, and MAPK  or lead to the inactivation of PTEN  to participate in the regulation of tumor cell proliferation . For

example, copper chaperones of superoxide dismutase promote breast cancer cell proliferation through ROS-mediated

MAPK/ERK signaling . Inactivation of PTEN due to H O  over-activates the PI3K/AKT/mTOR signaling pathway to

promote breast cancer cell proliferation .

On the other hand, ROS can also inhibit the proliferation of tumor cells in several ways. It was found that high levels of

ROS mediated AKT-dependent signaling pathways to effectively inhibit the proliferation of rectal cancer (CRC) cells . In

addition to this, high levels of ROS can also inhibit tumor growth through sustained activation of cell cycle inhibitory

factors. It was noted that significant elevation of p27  leads to quiescent cell cycle arrest in the G  phase , whereas

silencing p27  significantly reverses this arrest and re-enters the cell cycle . By contrast, the most frequently

reported are p21  (CDKN1A) and p16  (CDKN2A), the accumulation of which first leads to the

hypophosphorylation of retinoblastoma protein (RB) and then inhibits the trans-activation of E2F genes involved in

nucleotide metabolism and DNA synthesis , leading to termination of the regular cell cycle and ultimately inhibiting cell

proliferation  (Figure 2).

Figure 2. Oxidative stress based on ROS levels will directly affect tumor cell growth state. (Created with BioRender.com).

5. Oxidative Stress and Tumor Immunity

Oxidative stress exerts a dual effect on tumor immunity. Oxidative stress not only plays a pivotal role in antitumor immune

cell differentiation, maturation, and activation, but also imposes an inciting effect on tumor immune escape via evoking

tumor-associated immune cells and wreaking havoc on the antitumor system.

Firstly, a variety of immune cell-derived exosomes, represented by macrophage-derived exosomes, implement a

tumoricidal effect by directly releasing ROS . Furthermore, ROS indirectly induces an antitumor effect by boosting

immune cells. For example, PRAK deficiency-induced ROS accumulation impairs the differentiation of Th17 cells and

antitumor immunity though disrupting phosphorylation of STAT3 . ROS spurs dendritic cell maturation by activating

p38-MAPK and ERK1/2 . In addition, ROS is involved in the activation of many immune cells, like CD8+ T cells ,

macrophages  , and dendritic cells . NLRP3 inflammasome is a crucial component of the innate immune system

mediated by ROS  and contributes to various cancers like gastrointestinal tract  and breast cancer , while it is

also demonstrated to be tumor-promoting in gastric and skin cancer . The cGAS/STING pathway, which has been

reported to be ROS mediated, exerts a crucial dichotomous function in the antitumor process, including agitating type I

IFN induction in DCs, prompting antitumor CD8+ T cell responses, maintaining CD8+ T cell stemness, etc. .

While in some tumor cells, enriched cGAS/STING signaling kindles a tumor-promoting function by activating NF-κB,

TBK1, and IRF3 . In addition, the aforementioned ROS-associated metabolic reprogramming also occurs in T cells,

prompting CD4+T memory cell and CD8+T memory cell formation and survival .

Cancer development and immune escape cannot be separated from the interaction between tumor cells and the tumor

microenvironment (TME), and the involvement of oxidative stress is essential in this process . On the one hand, ROS

takes part in activating and inhibiting the function of immune cell such as myeloid-derived suppressor cells (MDSCs) ,

regulatory T cells (Tregs) , and tumor-associated macrophages (TAMs) . For example, SUMO-specific protease 3
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(SENP3) accumulation triggered by ROS is involved in deubiquitinating modification of transcription factor BACH2 and its

activity in maintaining Treg cell-mediated tumor immunosuppression . In malignant melanoma, mitochondrial ROS

produced by TAMs stimulates MAPK/ERK activity, which leads to the secretion of TNF-α and promotes tumor cell invasion

. On the other hand, the ROS-induced tumor-promoting microenvironment inhibits tumor-killing cells, such as cytotoxic

T lymphocyte (CTL)  and CD8+ tumor-infiltrating lymphocytes . For example, tumor-associated neutrophils produce

O  mediated by NOX2, inhibiting the expansion of γδ T cells, which promote tumor development by producing IL-17 .

Recent studies have indicated that the PRAK-NRF2 axis, which is associated with ROS, is essential for Th17 cells to

maintain antitumor effects . Phosphatase PAC1, as an oxidative stress responder  and a negative regulator of the

immune system, specifically inhibits T lymphocyte defense and promotes tumor immune escape . In addition, the

potential of converting M2-TAMs into the immune-promoting M1 subtype has been identified as a promising approach to

combat clinically challenging carcinomas . It is ROS in the TME that promotes the polarization of M2 tumor-associated

macrophages (TAMs) . Furthermore, T cells in a cellular stress response state (TSTR) are predominantly observed in

the TME, which contributes to immunotherapy resistance  (Figure 3).

Figure 3. Oxidative stress is involved in tumor immunity. MDSCs, myeloid-derived suppressor cells; Tregs, regulatory T

cells; TAMs, tumor-associated macrophages; CTL, cytotoxic T lymphocyte; TSTR, T cell stress response state; ILC, innate

lymphoid cell. (Created with BioRender.com).

6. Oxidative Stress and Tumor Metastasis

Increasing evidence suggests that higher levels of ROS are critical for promoting and maintaining malignant biological

behaviors of cancer cells, such as their aggressive metastatic phenotype . In order to achieve the malignant

transformation of tumors, early-stage tumor cells usually use the epithelial–mesenchymal transition process (EMT) to

invade neighboring stromal cells . During this transformation process, ROS promotes tumor metastasis by inducing

Rho family guanosine triphosphatase-dependent cytoskeletal rearrangements, promoting matrix metalloproteinase-

dependent extracellular matrix protein degradation, and accelerating hypoxia-inducible factor-dependent angiogenesis

. Deacetylated SOD2 fosters mitochondrial antioxidant properties, thereby protecting cells from oxidative damage and

inhibiting tumorigenesis . However, in the process of tumor development, SOD2 is modified by acetylation, which

instead increases mtROS to promote hypoxia signaling, thus promoting EMT in breast cancer cells . Similarly, some

factors regulated by redox, like HSF1 , NF-κB , and MMP , also promote metastasis. For example, high levels of

ROS in tumor cells activate NF-κB, promoting transcription factor (Snail) expression, downregulating epithelial calmodulin

(E-cadherin), and promoting the expression of neural calmodulin and waveform protein, which leads to disruption of cell–

cell junctions and triggers the EMT process, stimulating tumor cell metastasis . Furthermore, the downregulation of

carnitine palmitoyltransferase 2 (CPT2) induces the ROS/NF-κB pathway in ovarian cancer to promote tumor growth and

metastasis .
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In addition, several studies have shown that ROS can also regulate protein hydrolases matrix metalloproteinases (MMP)

 and serine proteases, leading to ECM  degradation and interfering with the invasive phenotype of tumor cells. For

example, G6PD promotes ROS production and activates the MAPK signaling pathway in ccRCC cells, promoting MMP2

overexpression in ccRCC cells and clear cell renal cell carcinoma invasion . In addition, AE-BCT inhibits MMP-9 activity

by suppressing ROS-mediated NF-κB activation, thereby significantly reducing the metastatic activity of highly malignant

cancer cells . The effect of oxidative stress on EMT was also found to be variable. In stable non-small cell lung cancer

cell lines (NSCLC), N-acetylcysteine (NAC) treatment can reduce ROS levels and inhibit EMT phenotypic transformation,

which in turn restores the sensitivity of gefitinib-resistant NSCLC cells to gefitinib . Also, in oral squamous cell

carcinoma (OSCC) with aberrant expression of serine-threonine protein kinase A (AURKA), the knockdown of AURKA can

increase ROS levels and inhibit EMT .

7. Oxidative Stress and the Relationship Between Aging and Tumors

Cellular senescence, i.e., irreversible arrest of proliferation, is composed of replicative senescence (RS) and stress-

induced premature senescence (SIPS). It can lead to cancer development and age-related diseases . Senescence

was once thought to be the antithesis of tumorigenesis and progression as a universal barrier all tumor cells must

overcome . However, in recent years, more and more research has revealed that cellular senescence can also

promote hyperplastic pathologies, including cancer . Meanwhile, oxidative stress plays a critical role in the interaction

between senescence and cancer, as cellular senescence responds to long-term cellular stress .

Oxidative stress directly inducing tumor aging has been well demonstrated. ROS, a product of oxidative stress, plays an

important role in stress-induced premature senescence and contributes to the biochemical and molecular changes

required for tumor formation, promotion, and progression . For example, ROS triggers cellular DNA double-strand

breaks and the associated ATM signaling pathway  or activates senescence-related signaling pathways such

as P53/P21 , ASK1/JNK/p38 , and so on, leading to the inhibition of tumor cell proliferation and activation of

antitumor immunity. As one of the hinges of the cellular stress response, mitochondria play a pivotal role in oxidative

stress and stress-induced premature senescence. In colorectal cancer cells, artesunate treatment-induced mitochondrial

dysfunction can drastically spur mitochondrial ROS generation, thereby promoting cell senescence , which has

become a vital target of cancer therapy .

The role of cellular senescence in tumorigenesis and progression is many things. Senescence drives both aging and

tumors, most likely by promoting chronic inflammation and the senescence-associated secretory phenotype (SASP) .

The SASP component consists of several chemokines and cytokines that activate immune surveillance and bring about

innate and adaptive immune responses to clear senescent and proliferating tumor cells, and enhancing cancer

senescence-induced tumor suppressive capacity can support tumor cell growth arrest . On the contrary, in

recent years, an auxo-action for tumorigenesis has been demonstrated in senescence. SASP promotes malignant

phenotypes in nearby cells  and formats the tumor-permissive microenvironment . In an indirect way, stress-

induced immune cell senescence promotes tumor immune escape .

Oxidative stress is one of the reasons senescence is induced in SIPS and takes vital part in the processes of aging and

cellular senescence. Apart from ROS oxidizing cysteine residues, activating the three most common oncogenic switch

genes in humanity cancers , ROS possesses the capability to regulate DNMT activity, which is pivotal to the role of

aging in tumors . Moreover, ROS can activate various signaling pathways associated with cell senescence. For

example, ROS-mediated activation of the ASK1 signalosome subsequently activates the p38 MAPK and SAPK/JNK

pathways, which promotes senescence by oxidizing Trx . TP53/CDKN1A (p21) , pRB/CDKN2A (p16) , and

other decisive pathways of cell aging are affected by ROS directly or indirectly.

Normally, replicative senescence occurs accompanied by telomere attrition during a series of cell divisions . Then,

senescent cells are cleared via apoptosis or phagocytosis mediated by SASP and the innate immune system, such as NK

cells . However, erosion of telomeres can induce mitochondrial dysfunction and oxidative stress through the p53-

PGC-1α-NRF-1 axis .

8. Oxidative Stress and the Relationship Between Death and Tumors

Excessive ROS levels can induce tumor cell death . There are four primary forms of ROS-induced tumor cell death. The

first is the mitochondrial apoptotic pathway. Oxidative stress stimulation directly affects mitochondrial membrane potential

by disrupting mitochondrial inner membrane permeability , mediating pathways like bax/bcl-2-cyt-c  and p38

MAPK, and phosphorylating HSP27 , all of which promotes the release of cytochrome c (Cyt c) and activates caspase
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families, directly driving cancer cell apoptosis . Notably, the mitochondrial permeability transition pore (MPTP)

integrates ROS-induced cell apoptosis and calcium signaling through activation by both ROS and Ca , ensuing an influx

of Ca  and release of Cyt c . The second refers to the endoplasmic reticulum (ER) stress-mediated apoptosis

pathway. Research suggests that ROS can cause disorder of Ca  homeostasis in the endoplasmic reticulum, via

damaging RyR and IP3R gating and suppressing Ca -ATPase activity, thus inducing apoptosis in cancer cells such as

prostate cancer cells . The third refers to a form of iron-dependent cell death (ferroptosis) caused by the lethal

accumulation of lipid ROS, which has recently been identified in various cancers . Upregulated iron

concentrations with elevated levels of ROS stimulate the expression of tumor suppressor p14  (CDKN2A) and activate

p53, which ultimately inhibits NRF2 activity to promote the onset of ferroptosis . The fourth refers to the p53-mediated

apoptotic pathway, which has intricate crosstalk with other pathways. It has been demonstrated that p53 plays a

synergistic role with pro-apoptotic factors such as the pro-apoptotic proteins p21  and BAX, promoting the mitochondrial

apoptotic pathway . In addition, p53 can dually regulate ferroptosis via diverse pathways . Most interesting, it has

been suggested that p53 will transfer to the mitochondria to regulate mitochondrial membrane potential and trigger cellular

apoptosis under oxidative stress , and several proteins proven to interact with p53 directly or indirectly also locate

in the mitochondria under the state of oxidative stress, such as MDM2 , FOXO3a , ATM, c-Abl , Parkin ,

and TERT  (Figure 4).

Figure 4. Four primary forms of tumor cell death and regulation of oxidative stress. MDM2, a p53-specific E3 ubiquitin

ligase, as a potential target for activating p53 function in cancer therapy, mediates p53 degradation while responding to

oxidative stress via being phosphorylated by AKT, ATM, and c-Abl under the state of oxidative stress . SIRT1 and

SIRT3, as stress responders, deacetylate and inhibit p53, inducing apoptosis in HCC . (Created with

BioRender.com).

9. Oxidative Stress and Tumor Treatment

In theory, tumor therapies can be conducted via contradictory approaches, namely reducing oxidative stress to alleviate

tumorigenesis , metabolic reprogramming , metastasis , immune escape , and transformation of tumor-

promoting cells, such as CAFs , or bursting oxidative stress to induce aging and dying of tumor cells and tumor-

associated cells. Traditional treatment focuses on directly stimulating ROS though radiotherapy; pro-oxidation

chemotherapy drugs, including arsenic trioxide  and gemcitabine ; and drugs that non-specifically target the

mitochondrial electron transport chain, such as atovaquone  and rotenone . By contrast, with a capacity to

scavenge ROS and interact with oxidative stress-related signaling pathways, polyphenols (such as quercetin  and

curcumin ) are widely used in antitumor therapies to promote antioxidation . Nowadays, with a more in-depth

understanding of the mechanism of oxidative stress in tumorigenesis and progression, more and more therapies aim to

regulate the metabolic processes of redox substances and target crucial signaling pathways. Regulating metabolic

processes can be achieved by drugs that target key redox enzymes system. Drugs targeting GSH and the key enzymes

taking part in the production and functioning of glutathione (γ-GCS, GSTs, and xCT) are assessed for their ability to

disrupt self-protection responses to oxidative stress and drug efflux . Great significance has been attached to blocking

the oxidative stress-associated self-protective signaling pathways such as AMPK, NF-κB, Nrf2, c-Jun, and HIF-1α (Table
1). In addition, the antibody-drug-conjugate (ADC) strategy has become a darling of research and clinical treatmentby

specifically and efficiently killing cancer cells. Oxidative stress can provide a promising vision for the linker design owing to
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its heterogeneous existence in tumor cells and their microenvironment. GSH has been reported to work, and other

oxidative stress-relevant targets still need to be discovered .

In general, according to current clinical research and applications, use of pro-oxidants has developed into a relatively

mature antitumor therapy with a long history and diverse roles, including prompting tumor cell senescence, damage,

death, and regulating pivotal signaling . Meanwhile, pro-oxidants tend to incite various side effects, such as nerve

damage and bone marrow suppression  and may lead to ROS-induced drug resistance . Antioxidants, on the

contrary, are reckoned as possessing relatively less side effects when remedying cancer via regulating metabolism and

alleviating OS-induced damage . One of the most famous drugs is metformin, which has been demonstrated to reduce

mtROS production and inhibit migration and invasion in breast cancer .

However, antitumor therapies based on oxidative stress sometimes contradict the expected effect. Inhibitors of EGFR and

KRAS, both of which are associated with ROS , have been widely used in clinical studies with various antitumor

effects. For example, adagrasib primarily targets NSCLC by alleviating intratumoral immunosuppression , MRTX1133

potently suppresses pancreatic cancer tumor growth via increasing cellular apoptosis and impeding proliferation , and

lapatinib has been approved for the treatment of breast cancer . While EGFR and KRAS inhibitors have also been

demonstrated to slash oxidative stress , EGFR-TKI resistance promotes NSCLC by mediating ERRα re-expression,

then detoxifying ROS . As a vital member of the antioxidant system, Nrf2 is an ideal target of oxidative damage and

cancer therapy. Meanwhile, hyperactivated Nrf2 presents pro-tumorigenic activity and is associated with a worse clinical

prognosis . It is also regarded as a marker of the cancer-associated fibroblast (CAFs) phenotype because of inciting

the expression of genes characteristic for CAFs in skin fibroblasts, then deteriorating tumor development . Clinical

trials like SELECT and ATBC have indicated that tumor therapies based on antioxidative approaches such as dietary

supplementation with vitamin E, beta carotene, and so on do not always achieve the expected goals  and

sometimes promote tumor development instead . According to a set of facts like oxidative stress exerting a

dichotomous effect on tumor, the intratumoral heterogeneity , as well as the oxidative stress tolerance of cancer stem

cells and drug-resistant sub-populations , the intricate interactions with tumor microenvironment members like

CAFs, plus the cellular location of ROS where antioxidant elimination may also contribute to the observed failure due to

inhomogenous distribution of ROS in the cell , the conclusion can be drawn that practical effects on tumors are

discrepant and largely determined by the multi-dimensional heterogeneity of tumors. On the other hand, excessive

antioxidants may jeopardize normal physiological process relying on ROS, like immune killing. In a nutshell, the study of

cancer therapy based on oxidative stress should comprehensively take into consideration multiple factors to achieve

optimum therapy via precise targeting.

At present, clinical research still faces some problems, such as promoting mutations of some key genes that are

undruggable  and plenty of first-line drugs target multiple kinases, causing non specificity and side effects. Finding

more targets for the oxidative stress responses that protect cancer cells from death is necessary, while drugs specifically

targeting key signaling molecules, even one of their downstream pathways, must also be developed. There is a bright

prospect for much more precise treatment if drugs are developed to block the formation of a specific complex without

affecting their individual functions. This reveals the intense need to understand the specific mechanisms of oxidative

stress affecting tumors.

Table 1. Current clinical applications of antitumor therapies based on oxidative stress. Drug names, properties, applicable

cancer types, clinical research phase, and specific mechanisms are explained in detail in the table. Some drugs act on

tumor-associated cells or the TME, and they are specifically described in the Function section. The information comes

from references and the website ClinicalTrials.gov (https://clinicaltrials.gov/).

Drug Name Type Clinical Phase Specific Mechanism Function References

Arsenic
trioxide

Chemically
synthesized

drug

In p53-mutated pediatric
cancer, phase 2

Including autophagy, apoptosis,
necroptosis, and ferroptosis

Promote
oxidative
stress in

tumor cells

Gemcitabine
Chemically
synthesized

drug

In biliary tract cancer,
phase 3 trial

Inhibiting nuclear replication,
promoting p-STAT3 binding to
the promoters of Bmi1, Nanog,

and Sox2 genes.

Promote
oxidative
stress in

tumor cells

Elesclomol
Chemically
synthesized

drug

In ovarian, fallopian tube
or primary peritoneal

cancer, phase 2

Promoting cupproposis and
killing cancer cells

Promote
oxidative
stress in

tumor cells
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Drug Name Type Clinical Phase Specific Mechanism Function References

Rotenone Natural active
substance In colon cancer Inhibiting the PI3K/AKT/mTOR

signaling pathway

Promote
oxidative
stress in

tumor cells

Fucoidan Natural active
substance

In hepatocellular
carcinoma, phase 2

Boosting ROS and
mitochondrial superoxide

generation and draining ATP

Promote
oxidative
stress in

tumor cells

2-ME
Chemically
synthesized

drug

In patients with solid
tumors, phase 1

Inhibiting angiogenesisin,
increasing CD3+ cell number

and promoting tumour necrosis.

Promote
oxidative
stress in

tumor cells

Naringenin Natural active
substance

In human tongue
carcinoma CAL-27 cells

Inducing cell death via
modulation of the Bid and Bcl-xl

signaling pathways

Promote
oxidative
stress in

tumor cells

BT-Br
Chemically
synthesized

drug

In castration-resistant
prostate cancer DU145

cells

Binding to NADPH and inducing
ferroptosis

Promote
oxidative
stress in

tumor cells

Atovaquone
Chemically
synthesized

drug

In non-small cell lung
carcinoma, early phase 1

Inducing tumor cell apoptosis
by elevating ROS levels

Promote
oxidative
stress in

tumor cells

Metformin
Chemically
synthesized

drug

In advanced breast
cancer, phase 2

Increasing FOXO3a, p-FOXO3a,
AMPK, p-AMPK, and MnSOD

levels

Inhibit
oxidative
stress in

tumor cells

Rapamycin
Chemically
synthesized

drug

In angiofibromas, phase
2

Targeting mTOR, inhibits tumor
proliferation

Inhibit
oxidative

stress in pre-
cancerous

cells

Pirfenidone
Chemically
synthesized

drug

In neurofibromatosis
type 1 and progressive

plexiform neurofibromas,
phase 2

Suppressing CAF activation

Inhibit
oxidative

stress in CAF
cells

ME-143
Chemically
synthesized

drug

In refractory solid
tumors, phase 1

Targeting NADPH oxidase,
blocking ROS production

Inhibit
oxidative
stress in

tumor cells

Carboplatin
Chemically
synthesized

drug

In locally advanced triple
negative breast cancer,

phase 2

Facilitating early and durable
CAR T cell infiltration

Promote
oxidative

stress in TME

Apatinib
Chemically
synthesized

drug

In metastatic colorectal
cancer, phase 2

Alleviating hypoxia, increasing
infiltration of CD8+ T cells,

reducing recruitment of TAMs

Promote
oxidative

stress in TME

Propofol
Chemically
synthesized

drug

In pediatric tumor, phase
4

Inducing oxidative stress and
apoptosis

Promote
oxidative
stress in

tumor cells

Doxorubicin
Chemically
synthesized

drug

In advanced solid
tumors, phase 1

Perturbing mitochondrial
structure and function in tumor

cells

Promote
oxidative
stress in

tumor cells

Sunitinib
Chemically
synthesized

drug

In advanced solid
tumors, phase 1

Alleviating the tumor hypoxia,
improving pericyte coverage on

endothelial cells

Promote
oxidative

stress in TME

Salidroside Natural active
substance

In human gastric cancer
cell line

Downregulating Src-associated
signaling pathway and HSP70

expression

Inhibit
oxidative
stress in

tumor cells

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[153][203]

[204]

[205]

[206]

[207]



Drug Name Type Clinical Phase Specific Mechanism Function References

Lipoxin A4 Natural active
substance

In pancreatic cancer
cells

Suppressing the
ROS/ERK/MMPs pathway

Inhibit
oxidative
stress in

tumor cells

Lobaplatin
Chemically
synthesized

drug

In human gastric
carcinoma cell line BGC-

823

Decreasing mitochondrial
membrane potential

Promote
oxidative
stress in

tumor cells

Quercetin Natural active
substance

In metastatic breast
cancer, phase 1

Inhibiting signaling pathways,
including MAPK/ERK1/2,

JAK/STAT, AMPKα1/ASK1/p38,
etc. and inducing cell cycle

arrest

Inhibit
oxidative
stress in

tumor cells

Curcumin Natural active
substance

In advanced pancreatic
cancer, phase 2

Promoting apoptosis through
inhibiting NF-κB

Inhibit
oxidative
stress in

tumor cells

α-T-K
Chemically
synthesized

drug

In clinical
immunotherapy of

sensitized anti-PD-1

Reprogramming M2
macrophages, elevating the

curative effect of PD-1 antibody

Inhibit
oxidative

stress in TME

Artesunate Natural active
substance

In hepatocellular
carcinoma, phase 1

Promoting the accumulation of
intracellular lipid peroxides to
induce cancer cell ferroptosis

Promote
oxidative
stress in

tumor cells

MRTX1133
Chemically
synthesized

drug

In advanced non-small
cell lung cancer with

KRAS G12D mutation,
phase 3

Inhibiting KRAS G12D mutation,
eliminating ROS, and alleviating

intratumoral
immunosuppression

Promote
oxidative
stress in

tumor cells

Lapatinib
Chemically
synthesized

drug

In advanced or
metastatic breast cancer,

phase 1

Inhibiting EGFR and apoptotic
pathways

Promote
oxidative
stress in

tumor cells
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