

Brain Response to High-Calorie Visual Food Cues

Subjects: [Anthropology](#)

Contributor: Yingkai Yang

The conjunction analysis suggested that viewing high-calorie food cues activated the OFC in both normal-weight people and people with obesity.

high-calorie food cues

normal-weight

obesity

1. Introduction

The prevalence of obesity is problematic and rising in both developed and developing nations [\[1\]](#). This fact has far-reaching and costly implications, because obesity contributes to the development of numerous diseases (e.g., diabetes, some cancers) [\[2\]](#)[\[3\]](#)[\[4\]](#), and it is a risk factor for psychiatric disorders (e.g., depression, anxiety) [\[5\]](#). Not surprisingly, excessive weight has become an increasing threat to healthcare systems [\[6\]](#), and accounts for an estimated 2.8 million deaths per annum worldwide [\[7\]](#). These statistics have prompted a plethora of research aimed at understanding factors that contribute to the development or maintenance of obesity [\[8\]](#)[\[9\]](#)[\[10\]](#)[\[11\]](#)[\[12\]](#).

One contributing factor is the overconsumption of high-calorie or unhealthy foods (e.g., chocolate cake), and underconsumption of low-calorie or healthy foods (e.g., salad), which leads to a positive energy balance and, subsequently, weight gain [\[13\]](#)[\[14\]](#)[\[15\]](#). We are currently facing the rise of the 'obesogenic' environment [\[16\]](#) where the exposure to food advertisements, and availability of cheap, unhealthy, and energy dense foods has dramatically increased [\[17\]](#)[\[18\]](#). The constant exposure to high-calorie foods and food cues may promote overconsumption by stimulating brain reward and motivation pathways [\[19\]](#)[\[20\]](#). In this vein, using techniques such as functional magnetic resonance imaging (fMRI), a growing number of research has been conducted to investigate neural responses to various forms of food stimuli [\[21\]](#), such as liquid tastants, food odors [\[22\]](#), or visual food cues [\[23\]](#)[\[24\]](#). Moreover, recent reviews have used fMRI-based meta-analysis such as Activation Likelihood Estimation (ALE) [\[25\]](#)[\[26\]](#) to evaluate the consistency of findings across these studies [\[23\]](#)[\[24\]](#)[\[27\]](#)[\[28\]](#)[\[29\]](#)[\[30\]](#)[\[31\]](#)[\[32\]](#). For instance, Chen and Zeffiro meta-analyzed 39 experiments with 995 participants and found that taste (e.g, insula), sensory integration (e.g., postcentral gyrus), and reward processing (e.g., amygdala) regions were involved in processing sweet food cues (one kind of high-calorie foods) [\[30\]](#). With regard to visual food cues, several fMRI-based meta-analyses have also been conducted [\[18\]](#)[\[24\]](#)[\[27\]](#)[\[28\]](#). For example, an ALE meta-analysis including 12 experiments and 201 participants reported that visual food cues were reliably associated with increased blood oxygen level dependent (BOLD) response in the visual system proper (e.g., the occipital lobe) rather than reward-related brain network (e.g., the orbitofrontal cortex) [\[28\]](#).

None of the aforementioned meta-analyses, however, have investigated which brain regions are concurrently activated in response to viewing high-calorie food cues specifically. Furthermore, most of these meta-analyses only included participants with normal-weight and did not consider individuals with obesity (i.e., body mass index ≥ 30). A meta-analysis pooling data across relevant fMRI studies would therefore be warranted, as it may help to understand neural responses of viewing high-calorie food cues among people with various weight-status categories (e.g., normal-weight, obesity) and develop better interventions for preventing or reducing overeating and obesity.

2. Brain Response to High-Calorie Visual Food Cues in People with Normal-Weight

For brain activations of viewing high-calorie food cues in participants with normal-weight, the meta-analysis of 39 independent samples (493 foci) identified seven significant clusters (total volume of activation of $10,680 \text{ mm}^3$ and maximum ALE value of 0.0713) that covered regions of the bilateral fusiform gyrus, OFC, insula, as well as the right lingual gyrus (**Table 1**, **Figure 1**).

Figure 1. Significant clusters for viewing high-calorie food cues in samples of individuals with normal-weight.

Table 1. Separate meta-analytic results of significant clusters in individuals with normal-weight or obesity.

Cluster	Cluster Size (mm ³)	Brain Region	Peak Voxel MNI Coordinates			ALE Value (×10 ⁻²)	Z	Contributing Samples	
			X	Y	Z			No.	%
Normal weight									
1	2080	L Orbitofrontal Cortex	-24	32	-14	4.01	6.56	9	23%
2	1600	R Lingual Gyrus	20	-96	4	2.92	5.36	8	21%
3	1568	L Fusiform Gyrus	-46	-68	-6	2.73	5.02	8	21%
4	1568	L Insula	-38	-6	6	4.53	7.13	9	23%
5	1560	R Fusiform Gyrus	50	-60	-12	3.23	5.65	7	18%
6	1160	R Insula	40	-4	4	3.62	6.11	8	21%
7	1144	R Orbitofrontal Cortex	28	32	-16	2.24	4.37	8	21%
Obesity									
1	1680	L Orbitofrontal Cortex	-26	34	-16	2.56	5.33	6	35%
2	1344	L Lingual Gyrus	-16	-100	-4	1.96	4.47	6	35%
3	1000	R Orbitofrontal Cortex	32	28	-14	1.96	4.48	4	24%
4	928	Anterior Cingulate Cortex	0	36	14	2.15	4.75	5	29%

1. Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study 2013. *Lancet* 2014, **384**, 766–781.

Note: L: left, R: right. These presented clusters were significant at a $p < 0.001$ corrected for multiple comparisons using cluster-level family-wise error correction at a $p < 0.01$ (1000 permutations).

2. Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. *J. Am. Coll. Cardiol.* 2009, **53**, 1925–1932.

3. Core Brain Regions Activated by High-Calorie Visual Food Cues

3. Kyrgiou, M.; Kalliala, I.; Markozannes, G.; Gunter, M.J.; Paraskevaidis, E.; Gabra, H.; Martin-Hirsch, P.; Tsilidis, K.K. Adiposity and cancer at major anatomical sites: Umbrella review of the literature. *BMJ* 2017, **356**, i477.

The amygdala and OFC are connected with each other and frequently activated in food studies. The amygdala is thought to form the core of a neural system for fear processing [33]. However, accumulating evidence indicates that the amygdala also plays a prominent role in mediating positive/reward stimuli processing [34]. These findings have led to the viewpoint that the amygdala's predominant role may be the detection of and response to motivationally

15. Ruanpeng, D.; Thongprayoon, C.; Cheungpasitporn, W.; Harindhanayudhi, T. Sugar and The remaining significant clusters found in response to high-calorie visual food cues were located in the artificially sweetened beverages linked to obesity: A systematic review and meta-analysis. *OJM* 2017, **110**, 513–520.

16. Selsky, K.; Sawyer, P.; Pernell, L.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. *Lancet* 2011, **378**, 804–814.

17. Gearhardt, A.N.; Bragg, M.A.; Pearl, R.L.; Schvey, N.A.; Roberto, C.A.; Brownell, K.D. Obesity and public policy. *Annu. Rev. Clin. Psychol.* 2012, **8**, 405–430.

4. Common and Specific Brain Activations between Normal-Weight and Obesity

18. Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. *Lancet* 2011, **378**, 804–814.

19. Stice, E.; Burley, K. Hedonic, perspective, and vulnerability factors for obesity. *Clin. Psychol. Rev.* **2019**, *68*, 38–53.

20. Berridge, K.C.; Ho, C.Y.; Richard, J.M.; DiFeliceantonio, A.G. The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders. *Brain Res.* **2010**, *1350*, 43–64.

21. Yeung, A.W.K.; Wong, N.S.M.; Lau, H.; Eickhoff, S.B. Human brain responses to gustatory and olfactory food stimuli: A meta-analysis. *Neuroimage* **2018**, *202*, 116–117.

22. Han, P. Advances in research on brain processing of food odors using different neuroimaging techniques. *Curr. Opin. Food Sci.* **2021**, *42*, 134–139.

23. Van der Laar, L.N.; de Ridder, D.T.; Viergever, M.A.; Smeets, P.A. The first taste is always with the eyes: A meta-analysis on the neural correlates of processing visual food cues. *Neuroimage* **2011**, *55*, 296–303.

24. Van Meel, F.; Van der Laar, L.N.; Adari, R.A.; Viergever, M.A.; Smeets, P.A. What you see is what you eat: An fMRI meta-analysis of the neural correlates of food viewing in children and adolescents. *Neuroimage* **2015**, *104*, 35–43.

25. Eickhoff, S.B.; Bzdok, D.; Laird, A.R.; Kurth, F.; Fox, P.T. Activation likelihood estimation meta-analysis revisited. *Neuroimage* **2012**, *59*, 2349–2361.

26. Eickhoff, S.B.; Cleś, D.; Laird, A.R.; Giedd, J.N.; Fox, P.T. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random effects approach to hyper-solvable empirical estimates of spatial uncertainty. *Hum. Brain Mapp.* **2009**, *30*, 2907–2926.

27. Tang, D.W.; Fellows, L.K.; Small, D.M.; Dagher, A. Food and drug cues activate similar brain regions: A meta-analysis of functional MRI studies. *Physiol. Behav.* **2012**, *106*, 317–324.

28. Huerta, C.I.; Sarkar, P.R.; Duong, T.Q.; Laird, A.R.; Fox, P.T. Neural bases of food perception: Coordinate-based meta-analyses of neuroimaging studies in multiple modalities. *Obesity* **2014**, *22*, 1439–1446.

29. Yeung, A.W.K.; Goto, T.K.; Leung, W.K. Affective value, intensity and quality of liquid tastants/food discernment in the human brain: An activation likelihood estimation meta-analysis. *Neuroimage* **2018**, *169*, 189–199.

30. Chen, E.Y.; Zeffiro, T.A. Hunger and BMI modulate neural responses to sweet stimuli: fMRI meta-analysis. *Int. J. Obes.* **2020**, *44*, 1636–1652.

31. Sescousse, G.; Caldu, X.; Segura, B.; Dreher, J.C. Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. *Neurosci. Biobehav. Rev.* **2013**, *37*, 681–696.

32. Pursey, K.M.; Stanwell, P.; Callister, R.J.; Brain, K.; Collins, C.E.; Burrows, T.L. Neural responses to visual food cues according to weight status: A systematic review of functional magnetic resonance imaging studies. *Front. Nutr.* **2014**, *1*, 7.

33. LeDoux, J.E. Emotion circuits in the brain. *Annu. Rev. Neurosci.* 2000, 23, 155–184.
34. Janak, P.H.; Tye, K.M. From circuits to behaviour in the amygdala. *Nature* 2015, 517, 284–292.
35. Zheng, J.; Anderson, K.L.; Leal, S.L.; Shestyuk, A.; Gulsen, G.; Mnatsakanyan, L.; Vadera, S.; Hsu, F.P.; Yassa, M.A.; Knight, R.T.; et al. Amygdala-hippocampal dynamics during salient information processing. *Nat. Commun.* 2017, 8, 14413.
36. Richter-Levin, G.; Akirav, I. Emotional tagging of memory formation--in the search for neural mechanisms. *Brain Res. Brain Res. Rev.* 2003, 43, 247–256.
37. Rudebeck, P.H.; Mitz, A.R.; Chacko, R.V.; Murray, E.A. Effects of amygdala lesions on reward-value coding in orbital and medial prefrontal cortex. *Neuron* 2013, 80, 1519–1531.
38. Liu, X.; Hairston, J.; Schrier, M.; Fan, J. Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. *Neurosci. Biobehav. Rev.* 2011, 35, 1219–1236.
39. Hill-Bowen, L.D.; Riedel, M.C.; Poudel, R.; Salo, T.; Flannery, J.S.; Camilleri, J.A.; Eickhoff, S.B.; Laird, A.R.; Sutherland, M.T. The cue-reactivity paradigm: An ensemble of networks driving attention and cognition when viewing drug and natural reward-related stimuli. *Neurosci. Biobehav. Rev.* 2021, 130, 201–213.
40. Kringelbach, M.L.; O'Doherty, J.; Rolls, E.T.; Andrews, C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. *Cereb. Cortex* 2003, 13, 1064–1071.
41. Simmons, W.K.; Rapuano, K.M.; Ingeholm, J.E.; Avery, J.; Kallman, S.; Hall, K.D.; Martin, A. The ventral pallidum and orbitofrontal cortex support food pleasantness inferences. *Brain Struct. Funct.* 2014, 219, 473–483.
42. Londeree, A.M.; Wagner, D.D. The orbitofrontal cortex spontaneously encodes food health and contains more distinct representations for foods highest in tastiness. *Soc. Cogn. Affect. Neurosci.* 2021, 16, 816–826.
43. Rolls, E.T. Functions of the anterior insula in taste, autonomic, and related functions. *Brain Cogn.* 2016, 110, 4–19.
44. Dagher, A. Functional brain imaging of appetite. *Trends Endocrinol. Metab.* 2012, 23, 250–260.
45. Naqvi, N.H.; Bechara, A. The hidden island of addiction: The insula. *Trends Neurosci.* 2009, 32, 56–67.
46. Pelchat, M.L.; Johnson, A.; Chan, R.; Valdez, J.; Ragland, J.D. Images of desire: Food-craving activation during fMRI. *Neuroimage* 2004, 23, 1486–1493.

47. Zhu, J.N.; Wang, J.J. The cerebellum in feeding control: Possible function and mechanism. *Cell. Mol. Neurobiol.* 2008, 28, 469–478.

48. Caligiore, D.; Arbib, M.A.; Miall, R.C.; Baldassarre, G. The super-learning hypothesis: Integrating learning processes across cortex, cerebellum and basal ganglia. *Neurosci. Biobehav. Rev.* 2019, 100, 19–34.

49. Hanlon, C.A.; Dowdle, L.T.; Naselaris, T.; Canterbury, M.; Cortese, B.M. Visual cortex activation to drug cues: A meta-analysis of functional neuroimaging papers in addiction and substance abuse literature. *Drug Alcohol Depend.* 2014, 143, 206–212.

50. Ko, C.H.; Liu, G.C.; Yen, J.Y.; Chen, C.Y.; Yen, C.F.; Chen, C.S. Brain correlates of craving for online gaming under cue exposure in subjects with Internet gaming addiction and in remitted subjects. *Addict. Biol.* 2013, 18, 559–569.

51. Drewnowski, A. Taste preferences and food intake. *Annu. Rev. Nutr.* 1997, 17, 237–253.

52. Van den Akker, K.; Stewart, K.; Antoniou, E.E.; Palmberg, A.; Jansen, A. Food Cue Reactivity, Obesity, and Impulsivity: Are They Associated? *Curr. Addict. Rep.* 2014, 1, 301–308.

53. Devoto, F.; Zapparoli, L.; Bonandrini, R.; Berlingeri, M.; Ferrulli, A.; Luzi, L.; Banfi, G.; Paulesu, E. Hungry brains: A meta-analytical review of brain activation imaging studies on food perception and appetite in obese individuals. *Neurosci. Biobehav. Rev.* 2018, 94, 271–285.

54. Morys, F.; Garcia-Garcia, I.; Dagher, A. Is obesity related to enhanced neural reactivity to visual food cues? A review and meta-analysis. *Soc. Cogn. Affect. Neurosci.* 2020, nsaa113.

55. Meng, X.; Huang, D.; Ao, H.; Wang, X.; Gao, X. Food cue recruits increased reward processing and decreased inhibitory control processing in the obese/overweight: An activation likelihood estimation meta-analysis of fMRI studies. *Obes. Res. Clin. Pract.* 2020, 14, 127–135.

56. Stice, E.; Yokum, S. Neural vulnerability factors that increase risk for future weight gain. *Psychol. Bull.* 2016, 142, 447–471.

Retrieved from <https://encyclopedia.pub/entry/history/show/42423>