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The term ‘metabolomics’ was introduced in the literature in 1998 and refers to the study of small molecules in a

biological sample. In 2001, a group of biochemists founded the Society of Metabolomics, and the use of this

technology in various fields of research has increased greatly since 2005. Nutrimetabolomics, or nutritional

metabolomics, is an integral part of metabolomics with the goal of examining individual functional responses to

different diets, analysing specific dietary biomarkers for targeted foods and diets, and investigating the

interrelationship between risk factors for certain diseases and different diets both in the human and veterinary

science fields. 
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1. Introduction

With recent world developments, the emergence of new diseases endangering global health creates particular

challenges for the medical field. To meet these challenges, novel, highly precise technologies can be utilised to

facilitate clinical investigations and identify therapeutic and preventive solutions.

Here, the term ‘(nutri-)metabolomics’ is used to refer to both metabolomics and nutrimetabolomics. Metabolomics,

one of these novel technologies, is the analysis of the total profile of metabolites within a system (cell, tissue, or

organism) in a certain time period and under certain conditions. It is an integral part of the ‘omics’ sciences and

makes a direct link with the body’s phenotype, providing biochemical information in addition to genomic and

proteomic data . Metabolomic technology is constantly evolving and becoming widely used in an increasing

number of fields, including agriculture, environmental chemistry, biotechnology, and, in particular, medical sciences

for clinical diagnosis, toxicology, nutrition, drug progress, and health and disease management .

Nutrimetabolomics, or nutritional metabolomics, is an integral part of metabolomics with the goal of examining

individual functional responses to different diets, analysing specific dietary biomarkers for targeted foods and diets,

and investigating the interrelationship between risk factors for certain diseases and different diets both in the

human and veterinary science fields . Nutrimetabolomic technology aims to determine individual human and

animal reactions to nutrition, as well as to identify and implement personalized nutritional plans for optimal health 

.
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One Health considers the association of several decision-making authorities at the local, national, and global levels

with the aim of establishing interdisciplinary collaborations to ensure optimal living conditions and health for people,

animals, and the environment. The most recent diseases in animals and humans (SARS-CoV-2, Ebola, avian flu

(H5N1), swine flu (H1N1), etc.) are examples of global issues and the increased vulnerability of humans, animals,

and the environment to new disease outbreaks .

2. Metabolomics and Nutrimetabolomics

Given that nutrimetabolomics is a branch of metabolomics, here, one term or the other will be used, depending on

the context, although the study refers to both technologies—metabolomics and nutrimetabolomics.

The term ‘metabolomics’ was introduced in the literature in 1998 and refers to the study of small molecules in a

biological sample. In 2001, a group of biochemists founded the Society of Metabolomics , and the use of this

technology in various fields of research has increased greatly since 2005 . Among the ‘omics’ technologies

(genomics, transcriptomics, and proteomics), metabolomics has become increasingly utilized, especially in the last

decade. Metabolomics can be described as the overall analysis of small molecules in a biological fluid (blood,

urine, culture broth, cell extract, etc.), produced or transformed in the body, as a result of the intervention of a

stimulus (nutritional factors, stress, environment, drugs, etc.) . All metabolites that make up the ‘metabolome’

represent the molecular fingerprint of an organism . The profile of the metabolome (metabolic phenotype or

‘metabotype’) reflects the biological state of an organism (Figure 1) .

Figure 1. The usefulness of establishing the metabolic profile for medicine.
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As can be observed from the numerous studies found on search platforms, metabolomics is a frequently applied

technique. Interesting results have been obtained in the pharmaceutical (personal response to drug treatment,

efficacy and/or toxicity of drugs), medical (biomarkers for disease diagnosis and prevention), and plant science

fields (molecular structure, GMOs, etc.) .

Although metabolomics has recently been applied in nutrition, it is gaining increasing attention in this field .

Nutrition research has entered a new era, in which increased diet diversity and the relationships between nutrition

and genotype, lifestyle, and diseases are investigated in great detail, with new methodological approaches,

including ‘omics’ technologies to identify responses to various stimuli that have not been determined using

traditional approaches . Post-genomic technology also provides new methods and opportunities for research

in the field of nutrition to explain individual differences in metabolism and assimilation of food and nutrients .

Nutritional fields combine traditional nutritional methods with genotyping and phenotyping, molecular epidemiology,

and bioinformatics.

Nutrigenomics was the first nutrition domain to emerge investigating the effects of nutrients on genetic expression

profiles and assessing how an individual’s genotype may influence nutrient uptake, excretion, or activity .

The next field that evolved was nutriproteomics, which analyses molecular and cellular changes in protein

expression in response to nutrients and studies the interaction of proteins with nutrients in the food consumed 

.

Nutrimetabolomics is the dynamic and multivariate research of biological fluid or tissue responses to nutritional

stimuli. This technology analyses the direct or indirect effect of diet on metabolism .

Nutrimicrobiomics refers to the genetic structure and functional capacity of microbial populations and the

possibilities of the intestinal microbiome to process food and nutrients .

Food has long been known to influence the health and well-being of individuals, and nutrients have also been used

as medicines to treat and prevent disease . Research in this area has shown that diseases are often linked to

poor or unbalanced nutrition . At present, nutrition research has reached the level where metabolomics

(nutrimetabolomics) is used to phenotype the nutritional status of individuals and facilitate the discovery of new

biomarkers of specific nutrients or metabolic dysfunctions . Moreover, metabolomic methods can be used to

investigate the component metabolites of food in biological fluids and/or tissues, to study their bioavailability, the

body’s response to a particular diet, and to analyse certain foods or nutraceuticals .

Food and nutrition science focus not only on the interrelationship between diseases and the consumption of macro-

and micronutrients, but also study bioactive molecules that may be present in the diet in very small quantities .

These molecules can interact with various metabolic pathways and directly or indirectly modulate health, after

being transformed by the intestinal microbiota . Nutrimetabolomics offers the most accessible way to investigate

the impact of nutritional interference on health, because the metabolic configurations of easily obtained biological
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fluids, such as blood, plasma, and urine, contain valuable information on both genetic heritage and environmental

influences, including the contributions of dietary nutrients and their microbial transformations .

3. (Nutri-)Metabolomics in Human Medicine

Metabolomics developed rapidly in human medicine. It is primarily used to identify various biomarkers for the

diagnosis, prevention, and treatment of various diseases, but also to investigate the role of the intestinal microbiota

in the assimilation of dietary nutrients and to establish personalized nutrition plans or detailed food descriptions .

To identify the interconnections between lifestyle, diet, and health, it is necessary to establish specific biomarkers

that provide information about nutritional profiles. In order to identify them, several studies have been launched to

establish and develop nutritional markers  and to demonstrate their implications in the occurrence and

development of metabolic diseases (obesity, diabetes), chronic diseases (HBP, CVD) or other diseases (cancer)

.

In this regard, over time, the role of amino acids, fatty acids, or glucose metabolites in the onset and development

of obesity or diabetes has been analysed . It is known that the incidences of obesity/overweight and

blood pressure (BP) risk values (prehypertensive/hypertensive) are globally widespread. A critical BP is a major

risk factor for coronary heart disease and stroke, while obesity can, over time, lead to the onset of insulin

resistance and type 2 diabetes or associated metabolic and cardiovascular diseases . Various studies

have been conducted on the influence of healthy diets on reducing the risk of developing cardiovascular diseases,

type 2 diabetes, or various cancer types .

It is well known that nutrition is essential for maintaining life quality. Without nutrients, an organism cannot survive.

Balanced nutrition can contribute to good health. Metabolomics is a key tool in modern nutritional research for

analysing the number of calories, the ratio of food to fat, protein, and carbohydrate content, or the general intake of

nutrients (Figure 2). Metabolomics is also used to analyse non-nutritive molecules that are apparently not vital to

the body, but which, by their presence or absence, could affect the health and well-being of the body . Thus,

natural nutritive and non-nutritive molecules can be used as biomarkers for specific food consumption. These

dietary or nutritional biomarkers can then be used to estimate the intake and quality of nutrients in the food

consumed .
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Figure 2. Implication of nutrimetabolomics in nutrition scrience.

Biomarkers are usually specific to each nutrient, food compound, or complex food . For example, recent studies

have identified plasma trimethylamine oxide as a marker of fish consumption  or methylhistidines in urine as a

marker of animal protein intake . Another example would be the blood level of long-chain omega-3 fatty acids,

identified as an indicator for seafood consumption. Alkylresorcinols can be identified as markers of whole grain

consumption, whereas total plasma carotenoids can indicate fruit and vegetable intake . Furthermore,

proline betaine has been established as an indicator of citrus fruit consumption . Such studies

provide evidence that various compounds can be identified as food biomarkers, and their presence or

concentration in biological fluids can be a tool to identify the diet consumed . This type of analysis is new in that,

by identifying nutrients (i.e., identifying foods consumed by establishing the metabolic profile) the opportunity is

provided to evaluate different diets, to establish certain dietary patterns, and to objectively classify individuals,

depending on the types of diets they consume .

Studies are underway regarding the role of intestinal microorganisms in nutritional status and human health.

Metabolic changes between intestinal and host microbial populations, i.e., co-metabolism, can influence the

metabolic profile of the host (metabotype), an aspect highlighted by studies in this field . It has been

shown that the intestinal microbiota can predispose or contribute to certain human diseases. Thus, establishing the

quantitative profile of intestinal microorganisms may predict certain diseases by identifying metabolites or

metabolic processes that will be affected at some point . The identified metabolites may function as metabolomic
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biomarkers for assessing disease evolution and the body’s response to specific treatments. Considering the

significant interindividual differences in the population of intestinal microorganisms and host-microbe interactions,

individual variations in susceptibility to certain diseases can be identified, as well as the responses of each

organism to different pharmaceutical or nutritional interventions. This underscores the need to develop nutritional

modulation strategies through the creation and use of personalized diets, as well as individualized therapeutic

regimens to increase healthcare efficiency .

The future goal of nutrition research is to assess the metabolic response of each individual to diet. Personalized

nutrition is the process by which individuals will modify their lifestyle and diet according to the information they have

about their current health or future disease predispositions . The theory of personalized nutrition started from

the need to apply specific nutritional recommendations for population groups with similar characteristics . The

division of subjects into groups first requires the determination of the metabotype of each individual and then,

depending on their characteristic metabolic type and physiological state, a nutrition style that suits them is defined.

Following this process, personalized nutritional plans can be designed to modify and control the diet for the benefit

of health. Therefore, metabolomics is very important in establishing the nutritional phenotype of each individual and

identifying specific biomarkers to characterize various nutrients (food metabolome) or different metabolic

dysfunctions .

Recently, an increasing number of publications have emerged highlighting the connections between food science

and other fields, such as agriculture, biology, medicine, genetics, or veterinary science .

Metabolomics is a technology that can facilitate interdisciplinary connections by associating health with food quality

and nutritional value . Foodomics is the determination of food components. Macro- (proteins, fats, or

carbohydrates) and micronutrients (vitamins, minerals, or other molecular components) determine the nutritional

value of edible compounds necessary to maintain human health . Most of the food metabolome is

composed of phytochemicals. The best-known phytochemicals, highlighted by metabolomics studies, are fruit

polyphenols, tomato lycopene or soy isoflavones . Metabolomics can also identify chemicals in the

environment, such as insecticides, herbicides, fungicides, antimicrobials, toxins, and other contaminants, that may

be present in food and that could be harmful to the health of individuals who consume it .

Metabolomic studies have also been performed to establish the effects of genetically modified plants on the quality

and nutritional value of foods and their by-products . The origins of foods can also be determined based on

their metabolic profile . Furthermore, metabolomic studies can be used to analyse the effects of production

technologies applied to transform raw materials into finished food on their nutritional, biochemical, or sensory value

. In today’s society, these studies are becoming increasingly important, as consumers are increasingly

aware and concerned about the quality and origin of the food they consume, as well as the effects of food

processing on the nutritional value of food.

For both human and veterinary medicine, the use of metabolomic assessment to ensure food safety is of common

interest. Moreover, studies have analysed and highlighted differences in metabolites between foods of animal

origin contaminated with micro-organisms or parasites and uncontaminated foods . Consumers are

increasingly interested in organic food, mainly due to concerns about food quality and safety, as well as the
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publicity of the idea that organic products are healthier and safer than conventional foods. The relationship

between different types of agriculture (organic vs. conventional) and the various metabolic components that have

been identified through the use of diets of various origins in animal feed has attracted particular interest .

Thus, foodomics is important for ensuring public health on two levels: in the short term, it can be involved in clinical

interventions to treat various metabolic dysfunctions, such as diabetes and obesity; and in the long run, it can be

used in preventive public health strategies to prevent the occurrence of certain diseases .

4. (Nutri-)Metabolomics in Veterinary Medicine

The use of metabolomics in veterinary medicine is more limited compared with its use in the human medical field,

in which the applications of this advanced technology have been intensively explored. Although the application of

metabolomics in veterinary medicine is slightly behind that in human medicine, there has recently been a growing

interest in this method, especially because it is non-invasive and only requires biological fluids, particularly for the

investigation of animal health or disease (Figure 3) .

Figure 3. The importance of (Nutri-)Metabolomics in veterinary science.

Human diseases are frequently studied by inducing the disease in laboratory animals, especially rodents . It

should be noted that the use of animals in the study of diseases is performed in compliance with the ethical

principle of avoiding harm. In animal model studies, various pathological conditions are induced to understand the
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molecular phenomena associated with various diseases and their complications . The veterinary field may offer

the possibility to study some spontaneously occurring diseases in animals, even in parallel with the appearance of

the disease in humans, both in terms of the disease phenotype and pathogenesis . Metabolomics has been

used to study a variety of common diseases, such as type 2 diabetes , different types of cancer , and

congenital metabolic errors . This technique has also been applied to the study of the effects of different

medicinal regimens  or dietary interventions , toxins , and stress  on health.

Although the majority of metabolomic studies in veterinary medicine have focused on pets and primarily

investigated the pathogenesis and diagnosis of various diseases, studies on farm animals have also been

conducted . This is due to the fact that pets and farm animals are increasingly being studied as a reference

model for human diseases. In this context, increasing emphasis has been placed on precise comparative analyses

of human and animal diseases to accurately characterize the disease pathobiology. The closest animal species to

humans, from an anatomo-physiological and pathophysiological point of view, are dogs and pigs . These

species are frequently studied using metabolomic tools to obtain a more detailed perspective on the pathobiology

of diseases in humans. These types of studies have proven to be very effective, due to the use of standardized

environmental conditions in terms of animal feeding and housing .

However, some researchers argue that canine models would be most appropriate for metabolomic studies due to

the similarities in physiology and pathophysiology between dogs and humans. Thus, canine models have high

clinical significance for human medical research . Canine subjects can be used in metabolomic research to

identify specific biomarkers associated with many common diseases, including cancer, heart disease 

, liver disease , and parasitic or infectious diseases . Furthermore, studies of common

neuropsychiatric disorders have been performed using canine models . Given the similarities in anxiety

manifestation and symptoms in humans and dogs, canine subjects could be considered a suitable model for the

study of human anxiety, thus contributing to the knowledge of disease mechanisms at the molecular level .

Dogs could also be helpful in the study of human ADHD, as it has been observed that dogs can spontaneously

exhibit specific ADHD behaviours .

Studies of strictly veterinary medical interest using metabolomics have also been con-ducted—in particular, studies

aiming to identify methods to increase the quality of life of animals and improve their health . Furthermore,

metabolomic studies in pets have evaluated differences in the metabolite profiles of dogs and cats  and

identified specific metabolic fingerprints for various dog breeds  as well as specific toxicological

biomarkers in dogs . Moreover, the metabolomic profile of cerebrospinal fluid of healthy and epileptic

dogs has been investigated .

Studies in nutrition physiology using metabolomics highlighted differences in the production of greenhouse gas

precursors by establishing personalized diets for ruminants . In the field of farm animal research, metabolomics

can also be applied to investigate the effects of nutritional programming on genetics, i.e., monitoring the epigenetic

effects of diet during early development . For maximum efficiency of the genetic selection response related to

the traits pursued, such as disease resistance, performance or product quality, the researchers identified precise
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biomarkers that can be used to predict the manifestation of phenotypic characteristics . Thus, for metabolomic

research in the field of genetics, using livestock species provides several benefits, compared with using human or

laboratory animal populations, such as multi-generation genealogies, long-term selection lines with large

phenotypic differences, routine population phenotyping, targeted mating, opportunities to standardize

environmental conditions, and a genome organization very similar to that of humans—more similar than that of

most laboratory animal species .

In livestock farming, the identification of the metabolomic profile can be a starting point for formulating future diets

or specific treatments to increase animal production, animal welfare, and the quality of animal products for human

consumption .

Nutrition is a complex process, conditioned by several factors. Nutritional metabolomics is a significant technology

for studying the relationship between an organism and its diet, as well as the interactions between the organism

and its genetics, lifestyle, or even gastrointestinal flora . The development of pet nutrition science has led to

an increase in the lifespan of dogs and cats and a significant improvement in their quality of life. Elucidating the

interactions between the nutrient molecules consumed through diet and the pathophysiological mechanisms that

can be encountered in the various systems of an organism provides the possibility to identify new intervention

methods and clinical management of the patient . In humans, the individual is considered the main element in

the emergence of diversity in nutritional metabolomic research, due to interindividual differences in genetic

background, age, sex, gastrointestinal flora, and lifestyle. In the case of pets, nutrition studies are less diverse,

enabling the conduct of longer-term research in controlled environments with low variation and consistency in

sample collection .

The body’s biofluids, such as blood, plasma, and urine, contain many metabolites in the form of small molecules,

such as amino acids, lipid fractions, or sugars, some of which may function as specific biomarkers and a way to

monitor pathological conditions or responses of the body to nutritional interventions . Metabolomics can be

a useful tool in understanding individual responses to different diets and developing personalized nutritional

formulas to improve health . In most studies, personalized nutrition refers to human medicine;

however, in an increasing number of recent studies in the field of veterinary medicine, the theory of personalized

medicine appears .

A future goal in the field of animal nutrition will be to develop metabolomic studies to understand the effects of

applying personalized diets using systems biology approaches. This will rely on the interconnection of a large

number of data resulting from biological processes involving nutrients and non-nutritive compounds present in

various ingredients used in animal feed, to manage the production and/or health status of animals as needed .

5. (Nutri-)Metabolomics in the Context of One Medicine

The One Health concept is a global strategy that aims to expand interdisciplinary collaborations and

communications in all aspects of health care for humans, animals and the environment .
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The interconnection between human and veterinary medicine was outlined in the nineteenth century by the

German pathologist, Rudolf Virchow (1821–1902). He said: ‘between animal and human medicine there are no

dividing lines—nor should there be. The object is different but the experience obtained constitutes the basis of all

medicine’ .

The One Health strategy was initiated in 2007 in collaboration with the American Medical Association and the

American Veterinary Medical Association to defend, im-prove, and promote the health and well-being of all species

by encouraging and supporting the teamwork of human physicians, veterinarians, and health researchers . The

concept of One Health is not new, but its importance has been increasingly recognized in recent years. A result of

21st century concerns, the One Health, One Medicine, One World theory is part of a broader set of research

programs and policies, including biosecurity, food security, translational medicine, and global health, with the goal

of removing interdisciplinary barriers. This is the scenario in which the future of the One Health initiative will be

developed .

One Health aims to increase the quality of life of all species, human and animal, given that about two-thirds

(60.3%) of emerging infectious diseases result from zoonoses, most of which originate in the wild (71.8%),

according to the studies of Frank et al. in 2008 . Karesh et al., in 2012, showed that over 60% of human

infectious diseases are caused by pathogens common to animals . In this regard, metabolomics can help

elucidate specific metabolic pathways and identify in vivo methods of infection, as well as the mechanisms of

action of pathogens, which could contribute to discovering novel preventive or therapeutic strategies .

Kafsack et al., in 2010, reported the main existing zoonoses, which included brucellosis, bovine tuberculosis,

rabies, leptospirosis, human African trypanosomiasis, and malaria . Other protozoan parasites that are the

causative agents of serious infections in both animals and humans, including host-life-threatening diseases, are

Toxoplasma gondii (toxoplasmosis), Leishmania spp. (leishmaniasis), Cryptosporidium spp. (cryptosporidiosis),

and Giardia spp. (giardiasis). While these diseases are becoming less common in developed countries, they

continue to endanger the health and lives of a significant number of the population in other parts of the world.

Moreover, these pathogens infect other non-specific host species, such as insects, birds, or even mammals, to

ensure their complete life cycle . The metabolic adaptation of these pathogens can provide them increased

resistance and allow them to exploit nutrient sources in variable niches. Detailed analysis of the metabolic profile of

each developmental stage of infectious pathogens and the degree of adaptation and modulation of their

metabolism to that of the host organism, as well as the host’s immune response to these infections, can ensure the

development of new therapeutic and medicinal strategies for humans and animals .

From the perspective of One Health, One Medicine, the study of zoonotic diseases is particularly important, given

that it involves the inevitable and complex interaction of linked biological systems: humans, animals, and the

environment . The biological system comprises all living organisms and their relations with the environment.

Thus, metabolomics research cannot be viewed singularly; all the functional systems of an organism are correlated

with each other and with the environment. Thus, a complex analysis of metabolites and a multidisciplinary

interpretation are needed to understand the overall functioning of organisms. For example, the analysis of plant
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metabolomics cannot be separated from that of mammals, because plant matter is the main source of food and

nutrients for animals.

The One Health approach must also include non-communicable diseases, which, according to the World Health

Organization, affect the lives of over 36 million people each year . Among the non-communicable diseases

common to humans and animals, investigated by numerous studies, cardiovascular diseases, coronary heart

disease, hypertension, obesity, diabetes, various types of cancer, epilepsy, etc. can be mentioned .

Because both humans and pets (dogs and cats) can be affected by the same diseases, research on diseases in

one species may be useful in the early intervention for other affected species . Determining the metabolic

profile (metabolomics/metabonomics), compared to other ‘omics’ profiles, has the advantage of mirroring the entire

ecosystem of the body, which provides an overview of the functionality of the whole organism. These data are still

difficult to analyse, especially at the level of an individual, due to the diversity of consumed food and thus the wide

range of nutrients that enter the body. Due to this inevitable complexity, metabolomics research has sought to

focus on the use of animal models whose genetic profile and environmental conditions can be more easily

monitored compared with those of the human population .

Since the 20th century, when canaries were first used as carbon monoxide detectors in coal mines to prevent

poisoning in miners, animals have been commonly used as sentinels for various pathologies, to maintain public

health . The use and monitoring of sentinel animals and the collection of all data on the occurrence of diseases

in animal populations help to identify sources of disease, analyse the effectiveness of drugs or preventive

intervention schemes, highlight the epidemiology of pathogens, or design an early intervention plan, thereby

ensuring public health .

Epidemiological research in the veterinary field has several advantages over epidemiological research conducted

in humans, such as a shorter period of disease development, an easier process to obtain necropsy and

histopathological data, and lower costs. Unlike other types of laboratory studies (e.g., cell cultures), sentinel animal

studies allow a more accurate study of conditions manifested in humans .

The One Health trend aims to support and encourage comparative studies on diseases that can be found in both

humans and animals, the most common being obesity, diabetes, autoimmune disorders, and cancer .

Studies that use metabolomics to study these diseases aim to understand disease pathophysiology and identify

biomarkers or therapies to improve public health.

Much of the research that has used sentinel animals to elucidate common pathologies has focused on the study of

different types of cancer in pets, especially dogs, which live very close to humans, intimately sharing the same

environment and consuming approximately the same categories of food. This is because most cancers found in

dogs have been shown to have about the same pathological characteristics, biological basis, clinical

manifestations, proportional morbidity, and identified risk factors (including eating habits), as those found in

humans . Thus, metabolomic or nutrimetabolomic studies involving detailed analyses of cancer in dogs

complement current knowledge in human medicine on the efficacy of immunotherapy, prolonged release of drugs,
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gene therapy, and the clinical-pathological picture of this ubiquitous disease . In the future, these types of

‘omics’ studies will allow the identification of personalized treatments and contribute to the development of

personalized medicine in both humans and animals.

Recently, there has been a continuous increase in the average body weight among the human population, resulting

in an increase of obesity. As the link between the occurrence of obesity in humans and pets is proving to be

increasingly close and complex, much more than what was known in the past, obesity should be seen as a unique

health issue and addressed in the context of One Health . Through a psychological analysis, obesity in both

dogs and their owners could be seen as an involuntary transfer of attitude towards the feeding process or eating

habits of owners to their dogs and as an orientation towards the humanization of pets . Nutrimetabolomic

studies in obese animals can explain the conditions of obesity establishment and its pathophysiology, so as to

prevent associated diseases, such as heart disease or diabetes.

As humans and pets share the same environment, the same ecosystem, studies in which animals can be used as

sentinels for humans are very appropriate; however, there are instances when humans can also serve as sentinels

in some animal health circumstances . Given that metabolomic studies are more advanced in human medicine,

the latest medical discoveries can also be applied in veterinary medicine, for the benefit of animal health, helping to

identify gaps in the control of animal diseases.

‘Omics’ technologies are fundamental in advancing One Health knowledge. The application of these advanced

technologies, together with a multidisciplinary collaboration, are the key tools in improving not only human and

animal health, but also food safety and security and, implicitly, ecosystem health .

Food safety refers to the preparation, handling and storage of food using methods that ensure the prevention of

foodborne illness . Foodborne illnesses are serious problems that can threaten public health. The number of

cases of foodborne diseases, including those caused by waterborne pathogens, is increasing . Infectious

diseases and food safety are interrelated. Animal disease influences animal production and, thus, the availability of

food of animal origin for human consumption. In addition, food insecurity and malnutrition are aggravating factors

for opportunistic infections . Thus, plant and animal food safety is an area in which metabolomics can be

successfully used, for identifying specific biomarkers of food contamination .

The World Food Summit described food security as ‘when all people, at all times, have physical, social, and

economic access to sufficient, safe and nutritious food’ . In addition to quantity, food quality is also an

extremely important aspect of food security. In this context, dogs and cats can serve as sentinels to identify

possible food contamination, including chemical contamination, or to determine the effects of consuming

genetically modified plants and their derived food and feed products . Therefore, in the context of One

Health, ‘plant health’ must also be seen as an integrated aspect, especially since plant metabolomics is a

frequently studied field .

[163][164]

[154][165]

[165][166]

[167]

[168]

[169]

[146]

[148]

[170]

[148][171]

[148][172]

[173][174]
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Whereas in less developed countries there are people who suffer from hunger due to lack of food, in developed

countries there are widespread micronutrient deficiencies, also known as hidden hunger . Recent research in

the field of nutrition and the implementation of its results in public health has been shown to have an important

effect on reducing the incidence of diseases caused by deficiencies of essential nutrients. However, metabolic

disorders are not only caused by deficiencies of essential nutrients but also by micronutrient or non-essential

nutrient deficiencies. The increasing frequency of metabolic changes in energy regulation, manifested by diabetes,

obesity, or atherosclerosis, has affected a large part of the world’s population, including citizens of the world’s most

developed countries . Nutrimetabolomics can be used for the early identification of the effects of nutrient

deficiencies on the human body. These studies can be performed on animals first, as they are cheaper and less

time consuming .

The usual methods of nutritional analysis that focus on assessing the link between diet and health, in general, do

not cover the detailed understanding of the interdependence between a single nutrient and disease occurrence.

Using such a perspective, and specific analyses, unique disease biomarkers can be identified and used for disease

prevention. To determine the metabolic health of individuals, a more precise approach to nutritional assessment is

needed, and this is possible using nutrimetabolomics .

Nutrient deficiencies in humans are closely linked to the availability of micronutrients in food (animal or plant

origin), and this is dependent on the availability of micronutrients in animal feed and soil (for plants). However, the

presence of micronutrients in food sources is not enough; the body’s ability to metabolize some nutrients is also

essential because metabolism is closely correlated with health. These interdependencies are part of the concerns

of the One Medicine, One Health concept (Figure 4).

[175]

[115][176][177]

[178]

[115]
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Figure 4. Schematic representation of the importance of One Medicine. * GM plants—genetically modified plants.

The holistic approach of the One Health concept remains one of the main ways to study the direct and underlying

causes of food insecurity, malnutrition, and poor health and maximize human, animal, and environmental well-

being. The added value of the One Health approach is that the benefits to human health are achieved through

simultaneous investigations into human and animal health.

The future of mankind depends on a symbiotic relationship between humans, animals, and the environment. The

rapid evolution of the planet towards industrialization, highly advanced technologies, and massive urbanization with

a tendency towards human domination has led to an ecosystem imbalance and an increased vulnerability of

human health. These trajectories have put humanity in unprecedented situations, with a rapid multiplication of

emerging and re-emerging infectious diseases, as shown by the 2019 SARS-CoV-2 pandemic, amplified by the

establishment of antimicrobial resistance and associated with an exponential increase in noncommunicable

diseases.

In these situations, precise and rapid tools are needed to intervene in the face of threatening challenges to public

health. In this context, the integration of metabolomics in most research areas will contribute to identifying

customized solutions that will help restore the symbiosis between the human, animal, and plant populations and

the environment, under the comprehensive “umbrella’’ of the One Health strategy.
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