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Lattice material is a cellular material consisting of a periodic network of structural elements such as rods or beams.

This network of lattices exists over a wide spectrum of scale from the nanoscale to macroscale and has been

applied in a wide area of applications. In the nanoscale spectrum, most of the CNT (Carbon Nano Tube) based

sensors are made using lattice materials. Micro-lattices material is being developed intensively as it offers high

energy absorption capability. On a macroscale, due to its high stiffness and lightweight properties, lattice materials

are widely used in aerospace applications.
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1. Lattice Materials

Lattice material is a cellular material consisting of a periodic network of structural elements such as rods or beams.

This network of lattices exists over a wide spectrum of scale from the nanoscale to macroscale and has been

applied in a wide area of applications. In the nanoscale spectrum, most of the CNT (Carbon Nano Tube) based

sensors are made using lattice materials  as shown in  Figure 1a. Micro-lattices material is being developed

intensively as it offers high energy absorption capability . On a macroscale, due to its high stiffness and

lightweight properties, lattice materials are widely used in aerospace applications .

Lattice structures or materials could be also classified into several parameters, namely, geometry, deformation

properties, and rigidity. These determine a proper approach for understanding dynamics of lattice accurately

extend to design. Geometry-based classification is widely received in mathematics and solid-state physics and

especially in 2-D, two main categories are considered: regular and semi-regular . Representatives of each group

are illustrated in  Figure 1. Sub-sequentially, three types exist under the regular lattice, namely, square lattice,

triangular lattice, and hexagonal lattice. In semi-regular lattices, unit cells are tessellated Later, eight semi-regular

lattices are introduced in this paper for more details .
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Figure 1. Examples of different lattice topologies: (a) triangular; (b) Kagome; (c) diamond; (d) snub square .

In engineering applications, spatially periodic patterns of lattices can be viewed as a material or a structure

depending on its length scale. When the deformation is at a much larger length scale than the individual beam

length, such a network of a lattice is defined as “lattice material”.  Figure 2 shows such an example of lattice

materials. On the other hand, if the length scale between deformation and the individual beam is the same, then it

is viewed as a “lattice structure”. Asymptotic Theory might be a more suitable approach when dealing with lattice

materials . Meanwhile, modeling the beam individually is a better approach for lattice structure. This paper will

more focus on lattice materials rather than structure as it is more relevant to the homogenization method.

Figure 2. Lattice materials formed by network of beams; (a) ultralight Nano-metal truss hybrid lattice; (b) penta-

mode lattice .

The other key parameter that determines a suitable approach for understanding lattices is relative density. The

relative density is defined as the density ratio of lattice material to the solid material (  and has a pivotal

role in determining the elastostatic behavior of a lattice. Figure 3 shows the relationship between relative density
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and relative modulus. Slope 1 depicted in  Figure 3  is for stretch-dominated lattice and slope 2 is for bending-

dominated lattice. As it can be seen, honeycombs, one of the commonly used cores for sandwich panels, are

extraordinarily efficient. Physically, relative density depicts the porosity of lattice material. A low value of relative

density indicates high porosity, meanwhile, a high value of that indicates low porosity. For instance,   means

zero porosity as the density of the lattice is the same as one of the solid or bulk. Therefore, it is crucial to employ a

proper homogenization model or approach according to the value of relative density. For the low value of relative

density, e.g.,  , applying Euler–Bernoulli beam or Timoshenko beam elements to model the cell-wall

deformation will give an accurate result . Furthermore, Micro-polar theory , Bloch Wave Analysis and

Cauchy–Born hypothesis  might be employed for such cases as well. For a high value of relative density, the

Asymptotic Homogenization method will give a better and more accurate result .

Figure 3. Relative modulus plotted against relative density on logarithmic scales for cellular structure .

Lattices can also be categorized into stretching-dominated or bending-dominated based on their rigidity . Some

representatives of both categories are shown in Figure 4. A bending-dominated lattice reacts to external loads by

cell-wall bending due to its low nodal connectivity at the cell vertices. This results in a microscopic bending-

dominated failure mode, where the cell elements collapse by bending stresses . On the other hand, stretching-

dominated lattices predominantly behave by stretching due to the high value of nodal connectivity at the cell

vertices. For the same porosity or relative density, stretching-dominated lattices are stronger and have higher

stiffness than bending-dominated lattices. Gibson and Ashby  performed structural analysis and found that the

stiffness and the strength of lattice materials scale up with the value of relative density. The strength and stiffness

of stretching-dominated lattice scale up linearly by its relative density  , whereas the strength and stiffness of
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bending-dominated lattice are scaled up, respectively, by   and  . For example, at  , the stretching-

dominated lattice is far more superior than the bending-dominated lattice as it is 100 times stiffer and 10 times

stronger.

Figure 4. (a) Bending dominated lattices (b) Stretching dominated lattices .

2. Analytical Research of Lattice Materials

For a periodic network of lattices to be considered as material, the characteristic length of its cells needs to be at

least one or two orders of magnitude below the medium’s overall length scale. Hence, microscale study is vital to

understand the full behavior of the structure at the global scale, which is the basic principle of the homogenization

method. Numerous analytical and numerical methods have been constructed to determine the mechanical

behavior of cellular materials . All of these methods are based on various fields of

physics and mathematics ranging from asymptotic theory , elasticity theory  to micro-polar theory .

Moreover, experimental work has been done as well  though it is limited in design complexity due to

manufacturability in the process. However, recent advances in 3D manufacturing techniques such as 3D printing

has significantly improved the production of lattice materials in terms of accuracy with various kind of solid

materials. Nowadays the manufacturing process of lattice structure can be conducted at a very fine scale and with

lower overall cost . This advancement allows lattice materials to be more experimented on and be

tested against existing numerical and analytical models .

The analytical works to analyze and develop a method to obtain mechanical behaviors and properties of cellular

materials have been pioneered by several people; Gibson et al. , Masters et al. , Wang et al. , and

Christensen . They derived an analytical closed-form formula of mechanical properties of lattice materials for

several shapes and geometry. Their method is based on one common ground assumption, which is that the cell

behaves as Euler–Bernoulli beams. They obtain the mechanical properties by solving deformation and equilibrium

problems for a single cell, which generates some limitations to the application of the analytical method. It could only

be applied to a cell with a simple topology with small strains and no extreme change in geometry. Furthermore, it

only works in lattice structures with small relative density value ( ).

In terms of computational works, several different approaches have been developed. Asymptotic Homogenization

(AH) has been extensively employed to obtain the mechanical properties of lattice materials . AH has been
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proven and validated to be an effective homogenization method through comparisons with other methods and

experimental verification . As it does not have limits in the value of relative density. However, its major

shortcoming is the computational cost. It is more expensive than other common approaches, especially when the

problem contains a large number of variables . Recently, a variational AH of beam-like square lattice

structures has been discussed  and they explain and result when the microscale of the structure is in the finest

scale, i.e.,  . Another computational approach is a matrix-based multiscale method introduced by Vigliotti et al.

. They performed a linear multiscale analysis and FEA (finite element analysis) on a stretching and bending-

dominated lattice . Furthermore, they have applied a method to develop a non-linear model for lattice materials

.

Some homogenization approaches introduced here come from micro-polar theory  and solid-state

physics . The micro-polar theory introduces a microscopic rotation in addition to translational deformations.

The micro-polar elastic constants of the stiffness matrix can be found through either analysis of the unit cell  or

an energy approach . From solid-state physics, the combination of Bloch’s theorem and the Cauchy–Born

hypothesis has been applied to analyze mechanical behavior of planar lattices .

Recently, Machine Learning has been adopted to study lattice materials . Koeppe et al.  have

used a neural network on a set of simulation data to learn a parameterized mechanical model of a lattice structure

with particular geometry. Mian et al.  obtained an elastic material model for lattice structure using both FEA

(finite element analysis) and NN (Neural Network) approaches. These studies have produced results that are in

good agreement with both experiment and simulation with a significant increase in computational time and prove

that the data-driven method is an effective and efficient as well as reliable and accurate approach. In addition,

Machine learning has been used to simulate anisotropic elastic-plastic behavior of cellular structure  and deep

learning for topology optimization for lattice materials . As machine learning and AI are developing in a rapid

trend, data-driven methods are a rising prominent approach and worth looking into in the future of homogenization

problems.
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