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Lattice material is a cellular material consisting of a periodic network of structural elements such as rods or beams. This

network of lattices exists over a wide spectrum of scale from the nanoscale to macroscale and has been applied in a wide

area of applications. In the nanoscale spectrum, most of the CNT (Carbon Nano Tube) based sensors are made using

lattice materials. Micro-lattices material is being developed intensively as it offers high energy absorption capability. On a

macroscale, due to its high stiffness and lightweight properties, lattice materials are widely used in aerospace

applications.
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1. Lattice Materials

Lattice material is a cellular material consisting of a periodic network of structural elements such as rods or beams. This

network of lattices exists over a wide spectrum of scale from the nanoscale to macroscale and has been applied in a wide

area of applications. In the nanoscale spectrum, most of the CNT (Carbon Nano Tube) based sensors are made using

lattice materials  as shown in Figure 1a. Micro-lattices material is being developed intensively as it offers high energy

absorption capability . On a macroscale, due to its high stiffness and lightweight properties, lattice materials are widely

used in aerospace applications .

Lattice structures or materials could be also classified into several parameters, namely, geometry, deformation properties,

and rigidity. These determine a proper approach for understanding dynamics of lattice accurately extend to design.

Geometry-based classification is widely received in mathematics and solid-state physics and especially in 2-D, two main

categories are considered: regular and semi-regular . Representatives of each group are illustrated in Figure 1. Sub-

sequentially, three types exist under the regular lattice, namely, square lattice, triangular lattice, and hexagonal lattice. In

semi-regular lattices, unit cells are tessellated Later, eight semi-regular lattices are introduced in this paper for more

details .

Figure 1. Examples of different lattice topologies: (a) triangular; (b) Kagome; (c) diamond; (d) snub square .

In engineering applications, spatially periodic patterns of lattices can be viewed as a material or a structure depending on

its length scale. When the deformation is at a much larger length scale than the individual beam length, such a network of

a lattice is defined as “lattice material”. Figure 2 shows such an example of lattice materials. On the other hand, if the

length scale between deformation and the individual beam is the same, then it is viewed as a “lattice structure”.

Asymptotic Theory might be a more suitable approach when dealing with lattice materials . Meanwhile, modeling the

beam individually is a better approach for lattice structure. This paper will more focus on lattice materials rather than

structure as it is more relevant to the homogenization method.
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Figure 2. Lattice materials formed by network of beams; (a) ultralight Nano-metal truss hybrid lattice; (b) penta-mode

lattice .

The other key parameter that determines a suitable approach for understanding lattices is relative density. The relative

density is defined as the density ratio of lattice material to the solid material (  and has a pivotal role in

determining the elastostatic behavior of a lattice. Figure 3 shows the relationship between relative density and relative

modulus. Slope 1 depicted in Figure 3 is for stretch-dominated lattice and slope 2 is for bending-dominated lattice. As it

can be seen, honeycombs, one of the commonly used cores for sandwich panels, are extraordinarily efficient. Physically,

relative density depicts the porosity of lattice material. A low value of relative density indicates high porosity, meanwhile, a

high value of that indicates low porosity. For instance,  means zero porosity as the density of the lattice is the same as

one of the solid or bulk. Therefore, it is crucial to employ a proper homogenization model or approach according to the

value of relative density. For the low value of relative density, e.g., , applying Euler–Bernoulli beam or Timoshenko

beam elements to model the cell-wall deformation will give an accurate result . Furthermore, Micro-polar theory

, Bloch Wave Analysis and Cauchy–Born hypothesis  might be employed for such cases as well. For a high value of

relative density, the Asymptotic Homogenization method will give a better and more accurate result .

Figure 3. Relative modulus plotted against relative density on logarithmic scales for cellular structure .

Lattices can also be categorized into stretching-dominated or bending-dominated based on their rigidity . Some

representatives of both categories are shown in Figure 4. A bending-dominated lattice reacts to external loads by cell-wall

bending due to its low nodal connectivity at the cell vertices. This results in a microscopic bending-dominated failure

mode, where the cell elements collapse by bending stresses . On the other hand, stretching-dominated lattices

predominantly behave by stretching due to the high value of nodal connectivity at the cell vertices. For the same porosity

or relative density, stretching-dominated lattices are stronger and have higher stiffness than bending-dominated lattices.

Gibson and Ashby  performed structural analysis and found that the stiffness and the strength of lattice materials scale

up with the value of relative density. The strength and stiffness of stretching-dominated lattice scale up linearly by its

relative density , whereas the strength and stiffness of bending-dominated lattice are scaled up, respectively,
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by  and . For example, at , the stretching-dominated lattice is far more superior than the bending-dominated

lattice as it is 100 times stiffer and 10 times stronger.

Figure 4. (a) Bending dominated lattices (b) Stretching dominated lattices .

2. Analytical Research of Lattice Materials

For a periodic network of lattices to be considered as material, the characteristic length of its cells needs to be at least one

or two orders of magnitude below the medium’s overall length scale. Hence, microscale study is vital to understand the full

behavior of the structure at the global scale, which is the basic principle of the homogenization method. Numerous

analytical and numerical methods have been constructed to determine the mechanical behavior of cellular materials 

. All of these methods are based on various fields of physics and mathematics ranging from

asymptotic theory , elasticity theory  to micro-polar theory . Moreover, experimental work has been done as well

 though it is limited in design complexity due to manufacturability in the process. However, recent advances in 3D

manufacturing techniques such as 3D printing has significantly improved the production of lattice materials in terms of

accuracy with various kind of solid materials. Nowadays the manufacturing process of lattice structure can be conducted

at a very fine scale and with lower overall cost . This advancement allows lattice materials to be more

experimented on and be tested against existing numerical and analytical models .

The analytical works to analyze and develop a method to obtain mechanical behaviors and properties of cellular materials

have been pioneered by several people; Gibson et al. , Masters et al. , Wang et al. , and Christensen . They

derived an analytical closed-form formula of mechanical properties of lattice materials for several shapes and geometry.

Their method is based on one common ground assumption, which is that the cell behaves as Euler–Bernoulli beams.

They obtain the mechanical properties by solving deformation and equilibrium problems for a single cell, which generates

some limitations to the application of the analytical method. It could only be applied to a cell with a simple topology with

small strains and no extreme change in geometry. Furthermore, it only works in lattice structures with small relative

density value ( ).

In terms of computational works, several different approaches have been developed. Asymptotic Homogenization (AH)

has been extensively employed to obtain the mechanical properties of lattice materials . AH has been proven and

validated to be an effective homogenization method through comparisons with other methods and experimental

verification . As it does not have limits in the value of relative density. However, its major shortcoming is the

computational cost. It is more expensive than other common approaches, especially when the problem contains a large

number of variables . Recently, a variational AH of beam-like square lattice structures has been discussed  and

they explain and result when the microscale of the structure is in the finest scale, i.e., . Another computational

approach is a matrix-based multiscale method introduced by Vigliotti et al. . They performed a linear multiscale

analysis and FEA (finite element analysis) on a stretching and bending-dominated lattice . Furthermore, they have

applied a method to develop a non-linear model for lattice materials .

Some homogenization approaches introduced here come from micro-polar theory  and solid-state physics 

. The micro-polar theory introduces a microscopic rotation in addition to translational deformations. The micro-polar

elastic constants of the stiffness matrix can be found through either analysis of the unit cell  or an energy approach .

From solid-state physics, the combination of Bloch’s theorem and the Cauchy–Born hypothesis has been applied to

analyze mechanical behavior of planar lattices .

Recently, Machine Learning has been adopted to study lattice materials . Koeppe et al.  have used a

neural network on a set of simulation data to learn a parameterized mechanical model of a lattice structure with particular

geometry. Mian et al.  obtained an elastic material model for lattice structure using both FEA (finite element analysis)

and NN (Neural Network) approaches. These studies have produced results that are in good agreement with both

experiment and simulation with a significant increase in computational time and prove that the data-driven method is an
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effective and efficient as well as reliable and accurate approach. In addition, Machine learning has been used to simulate

anisotropic elastic-plastic behavior of cellular structure  and deep learning for topology optimization for lattice materials

. As machine learning and AI are developing in a rapid trend, data-driven methods are a rising prominent approach and

worth looking into in the future of homogenization problems.

References

1. Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon nanotube chemical sensors. Chem. Rev. 2019,
119, 599–663.

2. Tancogne-Dejean, T.; Spierings, A.B.; Mohr, D. Additively-manufactured metallic micro-lattice materials for high specific
energy absorption under static and dynamic loading. Acta Mater. 2016, 116, 14–28.

3. Rashed, M.G.; Ashraf, M.; Mines, R.A.W.; Hazell, P.J. Metallic microlattice materials: A current state of the art on
manufacturing, mechanical properties and applications. Mater. Des. 2016, 95, 518–533.

4. Bici, M.; Brischetto, S.; Campana, F.; Ferro, C.G.; Seclì, C.; Varetti, S.; Maggiore, P.; Mazza, A. Development of a
multifunctional panel for aerospace use through SLM additive manufacturing. Procedia CIRP 2018, 67, 215–220.

5. Han, Y.; Wang, P.; Fan, H.; Sun, F.; Chen, L.; Fang, D. Free vibration of CFRC lattice-core sandwich cylinder with
attached mass. Compos. Sci. Technol. 2015, 118, 226–235.

6. Jenett, B.E.; Calisch, S.E.; Cellucci, D.; Cramer, N.; Gershenfeld, N.A.; Swei, S.; Cheung, K.C. Digital Morphing Wing:
Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures. Soft Robot. 2017, 4, 33–48.

7. Li, W.; Sun, F.; Wang, P.; Fan, H.; Fang, D. A novel carbon fiber reinforced lattice truss sandwich cylinder: Fabrication
and experiments. Compos. Part A Appl. Sci. Manuf. 2016, 81, 313–322.

8. Wei, K.; Peng, Y.; Qu, Z.; Zhou, H.; Pei, Y.; Fang, D. Lightweight composite lattice cylindrical shells with novel character
of tailorable thermal expansion. Int. J. Mech. Sci. 2018, 137, 77–85.

9. Cundy, H.M. Mathematical Models; Oxford University Press: Oxford, UK, 1956.

10. Their, T.; St-Pierre, L. Stiffness and strength of a semi-regular lattice. Raken. Mek. 2017, 50, 137–140.

11. Arabnejad, S.; Pasini, D. Mechanical properties of lattice materials via asymptotic homogenization and comparison with
alternative homogenization methods. Int. J. Mech. Sci. 2013, 77, 249–262.

12. Phani, A.S.; Hussein, M.I. Dynamics of Lattice Materials; Wiley Online Library: Hoboken, NJ, USA, 2017.

13. Gibson, L.J.; Ashby, M.F.; Schajer, G.S.; Robertson, C.I. The mechanics of two-dimensional cellular materials. Proc. R.
Soc. London. A Math. Phys. Sci. 1982, 382, 25–42.

14. Wang, A.-J.; McDowell, D.L. In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs. J. Eng. Mater.
Technol. 2004, 126, 137–156.

15. Kelsey, S.; Gellatly, R.; Clark, B. The Shear Modulus of Foil Honeycomb Cores. Aircr. Eng. Aerosp. Technol. 1958, 30,
294–302.

16. Masters, I.; Evans, K. Models for the elastic deformation of honeycombs. Compos. Struct. 1996, 35, 403–422.

17. Wang, X.L.; Stronge, W.J. Micropolar theory for two–dimensional stresses in elastic honeycomb. Proc. R. Soc. A Math.
Phys. Eng. Sci. 1999, 455, 2091–2116.

18. Elsayed, M.S.; Pasini, D. Analysis of the elastostatic specific stiffness of 2D stretching-dominated lattice materials.
Mech. Mater. 2010, 42, 709–725.

19. Ashby, M.F. The properties of foams and lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 15–30.

20. Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1999.

21. Gonella, S.; Ruzzene, M. Homogenization and equivalent in-plane properties of two-dimensional periodic lattices. Int. J.
Solids Struct. 2008, 45, 2897–2915.

22. Rezakhani, R.; Cusatis, G. Generalized mathematical homogenization of the lattice discrete particle model. In
Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Toledo,
Spain, 10–14 March 2013; pp. 261–271.

23. Tollenaere, H.; Cailleire, D. Continuous Modelling of Lattice Structures by Homogenization. Dev. Comput. Aided Des.
Model. Civ. Eng. 2009, 29, 699–705.

24. Vigliotti, A.; Deshpande, V.S.; Pasini, D. Non linear constitutive models for lattice materials. J. Mech. Phys. Solids 2014,
64, 44–60.

[45]

[44]



25. Wang, A.-J.; McDowell, D. Yield surfaces of various periodic metal honeycombs at intermediate relative density. Int. J.
Plast. 2005, 21, 285–320.

26. Park, S.-I.; Rosen, D.W.; Choi, S.-K.; Duty, C.E. Effective Mechanical Properties of Lattice Material Fabricated by
Material Extrusion Additive Manufacturing. Addit. Manuf. 2014, 1, 12–23.

27. Salehian, A.; Inman, D.J. Dynamic analysis of a lattice structure by homogenization: Experimental validation. J. Sound
Vib. 2008, 316, 180–197.

28. Du, Y.; Gu, D.; Xi, L.; Dai, D.; Gao, T.; Zhu, J.; Ma, C. Laser additive manufacturing of bio-inspired lattice structure:
Forming quality, microstructure and energy absorption behavior. Mater. Sci. Eng. A 2020, 773, 138857.

29. Rehme, O.; Emmelmann, C. Rapid manufacturing of lattice structures with selective laser melting. In Laser-Based
Micropackaging; International Society for Optics and Photonics: San Jose, CA, USA, 2006; Volume 6107, p. 61070K.

30. Tao, W.; Leu, M.C. Design of lattice structure for additive manufacturing. In Proceedings of the 2016 International
Symposium on Flexible Automation (ISFA), Cleveland, OH, USA, 1–3 August 2016; pp. 325–332.

31. Tran, H.T.; Chen, Q.; Mohan, J.; To, A.C. A new method for predicting cracking at the interface between solid and lattice
support during laser powder bed fusion additive manufacturing. Addit. Manuf. 2020, 32, 101050.

32. Cheng, L.; Liang, X.; Belski, E.; Wang, X.; Sietins, J.M.; Ludwick, S.; To, A.C. Natural Frequency Optimization of
Variable-Density Additive Manufactured Lattice Structure: Theory and Experimental Validation. J. Manuf. Sci. Eng.
2018, 140.

33. Christensen, R. Mechanics of cellular and other low-density materials. Int. J. Solids Struct. 2000, 37, 93–104.

34. Barchiesi, E.; Khakalo, S. Variational asymptotic homogenization of beam-like square lattice structures. Math. Mech.
Solids 2019, 24, 3295–3318.

35. Hassani, B.; Hinton, E. A review of homogenization and topology optimization I—homogenization theory for media with
periodic structure. Comput. Struct. 1998, 69, 707–717.

36. Koeppe, A.; Padilla, C.A.H.; Voshage, M.; Schleifenbaum, J.H.; Markert, B. Efficient numerical modeling of 3D-printed
lattice-cell structures using neural networks. Manuf. Lett. 2018, 15, 147–150.

37. Vigliotti, A.; Pasini, D. Linear multiscale analysis and finite element validation of stretching and bending dominated
lattice materials. Mech. Mater. 2012, 46, 57–68.

38. Askar, A.; Cakmak, A. A structural model of a micropolar continuum. Int. J. Eng. Sci. 1968, 6, 583–589.

39. Chen, Y.; Liu, X.N.; Hu, G.K.; Sun, Q.; Zheng, Q.S. Micropolar continuum modelling of bi-dimensional tetrachiral
lattices. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014, 470, 20130734.

40. Kumar, R.S.; McDowell, D.L. Generalized continuum modeling of 2-D periodic cellular solids. Int. J. Solids Struct. 2004,
41, 7399–7422.

41. Chiras, S.; Mumm, D.; Evans, A.; Wicks, N.; Hutchinson, J.; Dharmasena, K.; Wadley, H.; Fichter, S. The structural
performance of near-optimized truss core panels. Int. J. Solids Struct. 2002, 39, 4093–4115.

42. Alwattar, T.A.; Mian, A. Development of an Elastic Material Model for BCC Lattice Cell Structures Using Finite Element
Analysis and Neural Networks Approaches. J. Compos. Sci. 2019, 3, 33.

43. Arbabi, H.; Bunder, J.E.; Samaey, G.; Roberts, A.J.; Kevrekidis, I.G. Linking Machine Learning with Multiscale
Numerics: Data-Driven Discovery of Homogenized Equations. JOM 2020, 72, 4444–4457.

44. Kollmann, H.T.; Abueidda, D.W.; Koric, S.; Guleryuz, E.; Sobh, N.A. Deep learning for topology optimization of 2D
metamaterials. Mater. Des. 2020, 196, 109098.

45. Settgast, C.; Hütter, G.; Kuna, M.; Abendroth, M. A hybrid approach to simulate the homogenized irreversible elastic–
plastic deformations and damage of foams by neural networks. Int. J. Plast. 2020, 126, 102624.

Retrieved from https://encyclopedia.pub/entry/history/show/50535


