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The β coefficient is the estimate resulting from an analysis carried out on variables that have been standardized so that

their standard deviations (and variances) are equal to one. Therefore, the standardized coefficient refers to how many

standard deviations the response or outcome variable will change per a standard deviation increase in the explanatory or

predictor variable. Thus, the standardized coefficient β can be regarded as an attempt to make regression coefficients

more comparable, and can be used as an effect-size estimate when the exposure levels in original studies are measured

in different units of measurement.
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1. Standardized Regression Coefficient as an Effect-Size Index in Meta-
Analysis

Multivariable linear-regression models are used to analyze the associations between one quantitative dependent variable

and several explanatory variables. The unstandardized regression coefficient (b) estimated from the linear-regression

model is an easy-to-interpret statistic to describe how the explanatory variable affects the values of the outcome variable.

These coefficients are usually provided with their standard errors (SEs) or confidence intervals (CIs) in articles reporting

findings from regression models . The unstandardized regression coefficient b describes the effect of changing the

explanatory variable by one unit, and hence its size depends on the scale used to measure the explanatory variable.

However, the main explanatory characteristic is often measured using different methods and metrics in the reviewed

studies. Thus, the direct pooling of unstandardized regression coefficients is not meaningful across studies. To pool the

effects of explanatory variables measured with different scales, they must be expressed in a comparable manner. In such

a case, the standardized regression coefficient β may offer an option to synthetize the findings . 

The statistical significance of the standardized regression coefficient can be tested using the t-test of the null hypothesis

H : β = 0, or in substantive terms, no systematic relationship between the predictor and outcome. A p-value higher than

0.05 supports the null hypothesis that there is no association. A confidence interval for the coefficient  β  provides

information about the range of the β. A positive (negative) β-value supports the hypothesis that a high exposure level

increases (decreases) the response. When the confidence interval does not include 0, then the association between the

explanatory variable and outcome variable is considered statistically significant, in accordance with the p-value of the  t-
test <0.05.

When considering effect sizes, a natural question to ask is what constitutes a large, medium, and small effect size.

Cohen’s  guidelines for the classification of effect sizes are widely cited in scientific reports. For a coefficient β, effect

sizes between 0.10–0.29 are said to be only small, effect sizes between 0.30–0.49 are medium, and effect sizes of 0.50 or

greater are large .

An essential feature of the quantitative meta-analysis is its ability to compare the magnitude of effects across studies,

which requires the use of a single effect-size metric for measuring these effects. Using the standardized regression

coefficient  β as the common effect-size measure involves extracting the findings of reviewed studies expressed as

unstandardized regression coefficients, correlation coefficients or mean differences. These statistics are then re-

expressed as standardized regression coefficients and their standard errors. This process includes several conversions,

calculations, and approximations. 

In a meta-analysis, the findings (and effect sizes) are pooled from reviewed studies. However, every observed effect size

is not equal with regard to the reliability of the information it carries . Therefore, each effect-size value must be weighted

by a term that represents its precision. An optimal approach is to use the inverse of the squared standard error of the
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effect-size value as a weight. Thus, larger studies, which have smaller standard errors, are given more weight than

smaller studies, which have larger standard errors. The formula for computing the associated standard error must also be

identified. To obtain the summary effect of all the reviewed studies, the weighted average effect size can be computed

using the following formula:

(1)

where k = number studies, β  is the standard regression coefficient from study I, SE(β ) is the standard error of βi, and w  is

the inverse of (SE(β )) . The variance (SE(β ))   can be calculated using the fixed-effects or random-effects model .

This version of the meta-analysis procedure is commonly referred to as the generic inverse-approach . The approach is

implemented in all standard software packages for meta-analysis.

Meta-analyses typically report the summary effect size M with a measure of precision (SE or CI) and a p-value in a figure.

This figure, the forest plot, displays the effect estimates and confidence intervals for individual studies as well as the

summary effect.  Figure 1  provides two examples of forest plots. Following Cohen’s guidelines  and substantive

empirical reviews , for the absolute (non-negative) value of the pooled effect size |M|, a value of 0.10–0.19 is a small

effect size, a pooled value of 0.20–0.29 is classified as a medium effect size, and a pooled value of 0.30 or greater is a

large effect size.
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Figure 1. Forest plots for the association between childhood (A) and adolescent (B) body mass index (BMI) and adult

carotid intima-media thickness (cIMT). Total number of individuals was 5796 in childhood and 11,859 in adolescent in the

meta-analysis. (A) Childhood. (B) Adolescent.

2. Applications

In the following sub-chapters, I provide examples of meta-analytical studies where the use of the standardized regression

coefficient served as a useful tool for synthesizing the results of numerous studies on a particular topic. Unfortunately, I

also found meta-analyses where the coefficients r, b and β were confused .

2.1. Public Health

In environmental and public-health research, several outcomes and explanatory factors are often measured by different

methods and units of measurement. Dzhambov and co-workers  studied whether green spaces and general greenery

in the living environment of pregnant women were associated with the birth weight of their infants and what the direction of

that effect was. They performed meta-analyses on eight published studies exploring the association of residential

greenness and birth weight. The majority of the studies used multivariable linear regression to determine the effect of

residential greenery on birthweight adjustments for personal covariates. In the original studies, different indicators were
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chosen as a proxy for residential greenness. Thus, the standardized regression coefficient offers one solution to pool the

findings. The reported pooled β was 0.001 (95% CI = −0.001 to 0.003), showing a non-significant association between

greenness and birth weight. The authors noted that the findings were similar when the correlation coefficient was used as

an effect-size index.

Keenan A. Ramsay and her co-authors  presented in their meta-analysis that higher physical activity (PA) and lower

sedentary behavior (SB) are associated with greater skeletal muscle strength and muscle power in older adults. Articles

were included in the meta-analyses if the associations between PA or SB measures and hand grip strength or the chair

stand test were expressed as adjusted standardized regression coefficients (β) and their 95% CI or SE, or when these

could be calculated. They identified considerable heterogeneity in the research design, the definitions of measures of

outcome and explanatory variables, and the statistical analyses used to present the associations. This posed

methodological challenges to comparing and synthesizing the results.

In healthy individuals and people with chronic pain, an inverse association between physical-activity level and pain has

been reported (e.g., more activity and less pain). Jones et al.  examined the relation between aerobic capacity and pain

in healthy individuals and people with fibromyalgia. They collated their new data with data from previous original studies in

healthy individuals. To pool the findings identified by the literature search, standardized regression coefficients and their

standard errors were calculated. This involved converting the results of analyses using the correlation, linear regression,

or effect sizes of differences between groups and converting these to standardized  β  coefficients with their standard

errors. Then, 95% confidence intervals of the βs were calculated for presentation of the data on forest plots. Interestingly,

the authors noted that a pooled effect size for these studies was not calculated, because they presented several effect

sizes between various measures of pain and explanatory variables estimated from the same studies. Thus, the findings

do not provide independent estimates of an effect. The presented forest plots (standardized β coefficients with their 95%

confidence intervals) of findings from studies illustrate clearly that the associations between physical fitness and pain are

generally small and are highly variable within and across studies .

In 2020, Wang et al.  published a well-constructed quantitative summary of prenatal lead (Pb) exposure on birth weight.

Because the quantitative variables from each reviewed article were reported using different metrics and different

measures of association, they used standardized regression coefficients to allow a combination of findings from the

reviewed studies. The pooling of findings was conducted separately for maternal blood and cord blood as measures of

exposure variables. In addition, the analyses were restricted to unadjusted findings and to studies that adjusted for

potential confounders. There was a significant negative association between prenatal Pb exposure and birth weight. In the

unadjusted studies, birth-weight reduction was weakly associated with elevated lead levels in maternal blood (pooled β =

−0.094, 95% CI = −0.157 to −0.030) and cord blood (pooled β = −0.120, 95% CI = −0.239 to −0.001). When restricted to

the adjusted studies, these associations were weaker.

The study by Nicholas Burrows and his co-authors  reported meta-analyses of studies that examined correlations

between pain from knee osteoarthritis and physical activity or fitness. The effect sizes from the evaluated original studies

were converted to standardized regression coefficients in order to be included on the forest plots and to estimate the

pooled standardized coefficient. Data from their own new study were also included in the meta-analysis. From the 33

included studies, 13 provided data for the analysis of the associations between pain and physical activity, and 21 provided

data for the associations between pain and fitness. The extracted physical-activity variables were either questionnaire-

based measures of activity or objectively measured activity using pedometers or accelerometers. Separate meta-analyses

were performed for muscle strength, muscle power, and aerobic capacity. Statistically significant pooled βs were found

between objectively measured physical activity and pain severity. The more physically active individuals reported less pain

at a baseline measurement, and across the seven-day period of physical-activity measurement.

McLaughlin et al.  reviewed studies related to the association between engagement with a physical-activity digital

health intervention and physical-activity outcomes. A variety of different methods of association were used across the

included studies. For the clearly reported meta-analysis, authors were required to transform several estimates into one

consistent effect index. A standardized regression coefficient was chosen as the effect index. Many included studies

reported more than one association. For meta-analyses, they used hierarchical selection criteria to select a single

association from each study for inclusion in the pooled synthesis. When a study did not provide sufficient data required for

meta-analysis (i.e., information to calculate an effect estimate and measure of variability of the effect estimate), the

authors excluded this reesarch from the meta-analysis. A meta-analysis of 11 included studies indicated a very small but

statistically significant positive association between digital health engagement and physical activity (pooled β = 0.08, 95%

CI = 0.01 to 0.14).
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2.2. Psychology

Charlie Rioux and co-authors  published an interesting study where βs were used to represent the effect size of the

interaction between temperament and family variables on substance use or externalizing behaviors while controlling for

the other variables included in the tested model of the various studies. The authors searched for studies examining the

interactions between temperament and the family environment on the outcome variables. Analyses of the interactions

between two explanatory variables can be conducted using ANOVA techniques or with multiple regression models. The

interpretation of the interactions is difficult because different patterns of interaction among temperament and family

variables may have different implications. Due to issues with interaction terms and differences in measurements, the

researchers were cautious and did not report pooled effect sizes. However, the reported individual effect sizes and their

interpretation in the text still provide useful information about the possible interaction between the analyzed explanatory

variables.

Kaitlin Woolley and Ayelet Fishbach  examined the relationship between immediate versus delayed rewards and

persistence in long-term goals (e.g., healthy eating, exercising). The authors conducted five different intervention studies

to examine the associations. In each study, they conducted a regression analysis to estimate the associations and

reported βs. Finally, they pooled the βs using a meta-analytic approach to estimate an overall pattern across the five

studies. In summary, whereas delayed rewards may motivate goal setting and the intentions to pursue long-term goals, a

meta-analysis of their studies found that immediate rewards are more strongly associated with actual persistence in a

long-term goal. The effect of immediate rewards on persistence, controlling for delayed rewards, was considered to be of

medium size and statistically significant, (pooled β = 0.35, 95% CI = 0.28 to 0.42, p < 0.001).

Choi et al.  used a similar approach to Wooley and Fishbach  and combined the findings from five different studies

using β as the effect size. In each sub-study, they examined predictors of success in different achievement domains using

regression models. By conducting meta-analyses, they explored the overall pattern across the studies. Their findings

indicate that self-control is predictive of success in achievement-related domains (β = 0.27, 95% CI = 0.21 to 0.32), while

emotional well-being is predictive of success in relationship-related domains (β = 0.36, 95% CI = 0.29 to 0.43).

Two meta-analyses have examined the pain-related factors in individuals with chronic musculoskeletal pain . In both

studies, standardized regression coefficients and their 95% confidence intervals were calculated for the pooled results.

Reviewed studies were excluded from these analyses if they did not provide sufficient information for computing the SE of

the regression coefficient. Greater levels of fear of pain, pain-related anxiety, and fear-avoidance beliefs were significantly

associated with greater pain intensity and disability . In addition, higher levels of overly negative thoughts in response

to pain or pain-related cues were associated with more pain intensity and disability levels . The authors comment that

an important observation in their reviews was that despite the very large number of studies that have been performed to

evaluate the associations between pain-related factors and both pain and disability, the quality of the studies tended to be

very low. These included issues in statistical analyses and reporting. These shortcomings made it difficult to carry out

meta-analyses.

2.3. Other Sub-Fields

The paper by Yong Jei Lee and collaborators  is an example from criminology. The aim of their work was to show how

many standard deviations in the number of crimes will change per a standard-deviation increase (or decrease) in the

police-force size variable in the USA. They pooled standardized regression coefficients from 62 studies to estimate the

overall effect size. The estimated pooled effect size was −0.030 (95% CI = −0.078 to 0.019). The nonsignificant and tiny

mean effect size between police-force size and crime suggests that simply increasing police-force size may not help

reduce crime, and if it does, then it does not reduce crime by much.

Meta-regression can be used in a meta-analysis to assess the relationship between study-level covariates and effect size

. Sanghee Park  applied meta-regression to study the effect of various study characteristics on the observed

association between gender representation in the workforce and public-organization performance using the pooled β as

an effect-size index in 72 studies published between 1999 and 2017. Several covariates explained the variations in the

reported βs. Unfortunately, the message of Park’s article is hampered by an inadequate linkage between meta-regression

theory and the reporting of the applied field of meta-analysis.

Yahui Tian and Jijun Yao  applied meta-analysis to analyze a total of 20 effect sizes from 11 articles on the impact of

Chinese school resource investment on student performance. They found that the overall impact of school resources on

student performance is significant (pooled β = 0.093, 95% CI = 0.039 to 0.147). Since the standard regression coefficient

was used as the effect size in this research, an increase of one standard deviation in school resource investment will
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increase student performance by 0.093 standard points. It should be noted that combining the effects of human, material

and financial resources to an overall amount of resource investment in each study required multiple computational steps.

Standardized regression coefficients have also been applied in economics research. A paper published by Araujo et al. in

2020 provides a comprehensive synthesis of the evidence on macroprudential policies . Drawing from 58 empirical

studies, authors summarized the effects of macroprudential policy on several outcomes (e.g., credit, household credit, and

house prices). The economic literature does not have a standard definition of the variables used to measure the effects of

macroprudential policy. Enhancing the comparability of the effects across studies required the standardization approach to

the regression coefficient between the macroprudential-policy variable and the corresponding outcome variable. The

research then used a meta-analysis framework to quantitatively synthesize estimated βs. In addition, meta-regression was

used to examine how the βs varied with the research characteristics. Relying on β as an effect size in meta-analysis

techniques, this research demonstrated that on average, macroprudential-policy tools have statistically significant effects

on credit.
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