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Three-dimensional (3D) geological property modeling is used to quantitatively characterize various geological attributes in

3D space based on geostatistics with the help of computer visualization technology, and the results are often stored in

grid data. The 3D geological property modeling includes two main components, grid model generation and property

interpolation.
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1. Introduction

Three-dimensional (3D) geological property modeling refers to the quantitative characterization of various geological

features in 3D space in digital form based on geostatistics using computer visualization technology. It serves as the basis

for evaluating mineral resource assessments, reservoir physical property simulations, and reservoir numerical simulations

.

The main application of 3D property modeling in the petroleum field is to establish a geological model of the reservoir; this

type of modeling is therefore also called reservoir modeling. The characterization of 3D reservoir models provides an in-

depth understanding of the macroscopic distribution, internal structure, physical parameters, and variation characteristics

of oil and gas reservoirs, and this understanding is of great importance for oil and gas exploration and development .

Geostatistics, which is the core method of 3D property modeling, was proposed by Journel in the 1970s for application in

petroleum exploration and development  and has been widely used and developed since then. The advantage of

geostatistics is its ability to integrate data according to the source and reliability of the data and to integrate various

information, such as core, log, and seismic data, into the model while ensuring data consistency. In addition, geostatistics

can also provide uncertainty assessment as a basis for risk evaluation. In China, research on the theory, methods, and

applications of geostatistics started around the 1980s , and the application of geostatistics in reservoir descriptions for

reservoir geological modeling began in the early 1990s. Since Qiu  introduced the related work on reservoir modeling,

Zhang and Wang , Yu and Li , and Zhang et al.  successively carried out research on reservoir modeling methods

for actual reservoirs in China; this research laid the foundation for applying reservoir modeling technology in oilfield

development. Since then, with the development of computer technology and the research of numerous studies in

petroleum science and technology, the methods and techniques of reservoir modeling and its application to various

reservoir types have developed rapidly.

The oil and gas reservoirs in China are mainly terrestrial oil reservoirs with very complex subsurface conditions;

consequently, establishing a 3D property model for reservoir characterization is difficult. At present, most oilfields have

entered the middle and late stages of development and are in a state of high water content. The balance between

injection and production poses an increasingly prominent problem, so it is especially important to determine the amount

and distribution of the remaining oil in the reservoir. In addition, today’s petroleum exploration and development focus on

unconventional oil and gas reservoirs, such as shale gas and tight sandstone gas. Although such oil and gas reservoirs

are abundant in China, they are characterized by low porosity, low permeability, and high water saturation. Therefore,

compared with that of conventional oil and gas reservoirs, the development of unconventional oil and gas reservoirs is

bound to pose new requirements for reservoir modeling. To solve these problems, there is an urgent need to establish a

more refined reservoir model. Therefore, it is necessary to study grid framework models and geostatistical theories and

methods in depth so that they can accurately characterize the reservoir at various levels and describe the heterogeneity of

the reservoir while quantitatively evaluating the uncertainty of the model and reducing the risk of exploration and

development. Therefore, studying 3D property modeling methods can provide a powerful tool for improving the recovery

of oil reservoirs in China and offer theoretical guidance for effectively recovering the remaining oil and developing

unconventional oil and gas reservoirs.
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3D property modeling represents the heterogeneity of properties in the geological body, thereby reflecting the distribution

of the characteristic values of a certain class of physical and chemical properties of the geological body in 3D space, and

the results are stored in raster data . Based on this definition, 3D property modeling includes two main components:

3D grid model generation and property interpolation. In petroleum exploration and development, the 3D raster model is

also referred to as the reservoir grid, and due to the complexity of the physical structure of the reservoir, geostatistics are

applied to the model’s property interpolation.

2. Research on Reservoir Grid Generation Method

Building a 3D reservoir grid model is a key intermediate process and importantly affects the subsequent reservoir property

modeling and numerical simulation based on geostatistics. In modeling a reservoir by using geostatistical tools, the

gridding process essentially determines how to characterize the macroscopic homogeneity of the reservoir. Since

geostatistics are implemented on logical grids, a grid with excessive and excessively large distortion can easily cause the

variogram to become distorted, thus affecting the accuracy and reliability of the modeling of properties, such as

sedimentary facies and pore permeability . Additionally, the shape and resolution of the grid affect the accuracy and

speed of the numerical simulation of the reservoir .

Research on reservoir grid models has been carried out for many years, resulting in many grid types. Zakrevsky 

conducted comprehensive gridding and outlined the general procedure of grid generation. Reservoir grids are categorized

mainly into structured grids and unstructured grids. Structured grids are typically generated using hexahedra and are

organized in an orderly manner with i, j, and k, such as Cartesian grids and corner point grids, while unstructured grids

include tetrahedral grids and perpendicular bisector (PEBI) grids. In stratified deposits such as oil sand, often, the

Cartesian grid is transformed to a stratigraphic grid using a non-linear coordinate transformation, which is referred to as

unfolding. Thom  compared the characteristics of the s-grid, faulted s-grid, and pillar grid as well as these grids’

performance differences in property distribution, grid coarsening, and numerical simulation. As show in Figure 1, For the

s-grid, faulted s-grid, and pillar grid, the main difference is that they contain different fault treatment approaches. Three

different examples are extracted in Figure 1a–c, and the conceptual models are drawn, as show in Figure 1d, to show

the different fault treatment approaches. S-grid is also known as stair-step grid; the sides of this kind of grid cell remain

vertical and are controlled by an orthogonal footprint , as show in Figure 1a. Faulted s-grid is known as Jewel Grid; the

grid cells are split exactly at the local position of the fault plane, as show in Figure 1b . Pillar grid is widely used in

petroleum engineering, and the most common grid is the corner point grid. For the position of faults, the pillar that controls

the grid cells is parallel with the fault lines. Thus, the fault should be simplified when the fault is too complicated, as shown

in Figure 1c.
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Figure 1. Comparison of s-grid, faulted s-grid, and pillar grid : (a) example of s-grid; (b) example of faulted s-grid; (c)

example of pillar grid; (d) theoretical model of s-grid, faulted s-grid, and pillar grid for the processing of faults.

Gringarten et al. and Mallet et al.  divided the grids into “geological grids” for geostatistical property modeling and

“fluid simulation grids” for numerical simulation based on the different needs of reservoir modelers and digital modeling

engineers for grid use. In the many grid studies, the corner point grid represented by the pillar grid has been the hotspot of

research, with the most mature application. Pillar grid generation involves three main steps : (1) a fault model is

formed by simulating the fault using pillars; (2) gridding is carried out by combining fault pillars into a 3D grid framework;

and (3) vertical stratification is conducted by generating initial layer surfaces on the grid framework for geological

stratification. The pillar grid is characterized by its grid orientation along fault lines, boundary lines, or pinch-out lines,

indicating that the grid can be distorted, thus overcoming the inflexibility of the orthogonal Cartesian grids and allowing for

easy simulations of faults, boundaries, and pinch-outs . With the development of technology and the continuous

improvement in reservoir simulation accuracy, the defects of the pillar grid are gradually exposed as follows. First, due to

the limitation of the geometric location of pillars, it is necessary to simplify the fault when using pillars to construct a

complex fault network. Second, on the one hand, the nonorthogonality of the pillar grid makes calculating conductivity

during numerical simulation difficult; on the other hand, the nonorthogonality of the pillar grid affects the accuracy of the

results. Ruiu  proposed a grid generation method that adopts the form of a Cartesian grid at the global level and

simulates the fault by truncating the hexahedron, thereby finally constructing an XY-orthogonal and locally truncated grid

model. This grid can express the shape of the fault while avoiding the loss of orthogonality due to distortion, but the grid

generates many polyhedral grids in models with many faults, thereby also affecting the fluid simulation operations. After

analyzing the limitations of the pillar grid, Gringarten  proposed a vertical stair-step grid that is more suitable for fluid

simulation and experimentally demonstrated that this type of grid outperforms the pillar grid in terms of grid coarsening

and fluid simulation; the author did not give the method for generating this grid.
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In addition, many studies have been devoted to unstructured grids. The PEBI grid is flexible and locally orthogonal, thus

reducing the influence of grid orientation on the results. In 1988, Heinemann et al.  proposed the implementation of the

PEBI grid based on the Voronoi diagram for the numerical simulation of the reservoir grid and then improved the grid with

dynamic refinement as needed . Palagi of Stanford University  studied the use of the Voronoi grid, which

is essentially the PEBI grid, to simulate vertical and horizontal wells and performed numerical simulation of reservoirs.

Since then, scholars have successively carried out research on 3D PEBI grids along with investigation and improvement

in different application environments . Additionally, many studies on PEBI grids have been published in recent

years by Chinese researchers. Xie  and Lin et al.  systematically elaborated the application of PEBI grids in the

numerical simulation of reservoirs. Liu  addressed the problem of fine numerical simulation of reservoirs by adopting an

idea of a hybrid grid consisting of a radial grid in the oil well area and a PEBI grid in the reservoir area. Ref.  proposed

a similar idea on hybrid grids.

Xiang  and Zha  studied the generation algorithm of two-dimensional (2D) PEBI grids, but did not fully address

the generation algorithm of 3D PEBI grids. In general, the numerical simulation solutions of PEBI grids are not mature

enough and not widely used. In addition, the research on PEBI grids is mainly for the numerical simulation of reservoirs;

there are few studies on how PEBI grids are generated and maintain geological significance in geological modeling. In

other words, other grids generally need to be transformed before PEBI grids can be used for the numerical simulation of

reservoirs.

3. Interpolation Methods for 3D Property Modeling

3.1. Traditional Geostatistical Methods

There is often much spatial variability when dealing with subsurface space modeling in Earth science. Proposed by

Matheron , geostatistics is a tool to quantify this variability to enable geologists to predict behavior and make the most

useful decisions under the constraints of limited knowledge and resources. The major techniques for generating a 3D

model of the geological variables are the main focus, especially the interpolation methods; thus, the principal component

analysis (PCA), maximum autocorrelation factor (MAF), projection pursuit multivariate transform (PPMT), and related

methods are not considered. The PCA, MAF, PPMT, and other multivariate transforms methods are commonly used to

simulate correlated variables independently without the requirement of fitting a linear model. In addition, these approaches

can be applied in the data preparation procedure for the geostatistics approaches dealing with multivariate analysis.

Geological phenomena, especially in the petroleum industry, follow a series of complex physical rules that cannot be

expressed by simplified models. Reservoir properties, such as porosity and permeability, are needed in reservoir fluid

simulation equations to predict oil production and are required at each spatial location; however, porosity and permeability

can be obtained only in sparse wells. In other words, for economic reasons, it is generally impossible to accurately and

definitively obtain all the information required for a subsurface model. Therefore, spatial uncertainty is a fundamental

concept in Earth science. In the early days of the oil industry, practitioners tended to think deterministically and thus

expected to obtain a single estimate of oil production. Today, uncertainty is widely accepted.

Geostatistics captures this spatial uncertainty by generating multiple reasonable property models (also known as

stochastic realization). By integrating information from different sources, such as logging, coring, geological interpretation,

or seismic data, the study area and the true expression of this uncertainty can be obtained. Matheron  introduced the

regionalized variable Z(h) as the value of characteristic Z of a geological phenomenon at location u. Regionalization

means that variables expand in space and exhibit a specific spatial structure. If this concept is ignored, the variables are

randomly distributed in the reference region and thus do not exhibit any spatial continuity. However, physical processes in

geology are not random in space and have spatial continuity in their properties. For example, the continuity of the river

channel formed by a river flowing down the hillside is controlled by the complex physical phenomena along the path of the

river, and the mineral deposits tend to be concentrated in certain specific spaces. Thus, the regionalization of variables is

the main principle by which geostatistics differs from statistics. It would be impossible to make predictions if spatial

continuity does not exist. However, the physical laws that determine spatial continuity cannot be accurately modeled due

to the lack of information. To quantify spatial uncertainty, a mathematical model is needed to describe the spatial structure

of the variables in the study area. For example, the spatial trends in the data and the isotropy or anisotropy of the

variables can be obtained by defining a spatial variable model in geostatistics.

Geostatistical methods have evolved over the decades into two-point geostatistical methods (including the kriging method,

deterministic simulation method, and stochastic simulation methods), object-based methods, and multiple-point

geostatistics. The methods differ in how their spatial continuity and uncertainty models are expressed and how direct data
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(such as core data) or indirect data (such as seismic data) are integrated for stochastic realization of subsurface

conditions.

3.2. Multiple-Point Geostatistics Methods

The two-point geostatistical method uses the spatial correlation between any two points in the space or uses this

correlation as a simple variogram of the spatial continuity model for interpolation. This method relies only on the

relationship between two points, but in practice, the correlation of multiple points at once is desired. The formation

process of geological heterogeneity is very complex and cannot be expressed by a two-point variogram model. Some

complex geological phenomena, such as meandering river systems, cannot be described by traditional random function

models. There are three different spatial structures. For the variogram East–West, situation 1 and situation 2 are almost

the same, while the spatial structures are totally different. Meanwhile, for the variogram North–South, the 3 spatial

structures are alike. The variation function cannot fully reflect the spatial structure. Therefore, multiple-point geostatistics

are introduced to simulate this highly complex geological feature . The two-point geostatistical method differs from the

object-based method and is more likely to be faithful to valid data.

The idea of multiple-point geostatistics is to use more than two points to infer unknown random variables. Traditional

methods consider a stochastic model between two points; that is, the spatial continuity is assumed to be linear. Multiple-

point geostatistics uses a structure of more than two points for statistical inference; consequently, this method can

reproduce nonlinear spatial correlations. However, in practical applications, it is difficult to find enough points, especially in

the case of sparse data, thus not allowing direct inference of subsurface information or the establishment of a random

function model that can describe the spatial structure. Therefore, it is necessary to use the conceptual image of geometric

properties and geological features (which may be built using the interpreted geological data) for multiple-point

geostatistical inference. Such a conceptual image is called a training image.

The training image can be established from geological phenomena, such as the simulation of river sedimentation. The

corresponding inference does not come from real data but from the simulated data depicted by the training image. In

geological work, by simulating geological processes and even making outcrop photographs, one can depict waterways or

lobes and can make multiple-point geostatistical inference with photographs. Since the training image covers multiple

points, its spatial continuity pattern is more complex and comprehensive than that of the variogram. Therefore, the training

image is closely related to the sedimentary conditions. However, it is not faithful to any specific data but is simply a

conceptual image that characterizes the subsurface space. Therefore, it is appropriate to use the object-based method to

generate a training image that meets the requirement.

In 1993, Guardiano  studied the algorithmic implementation of multiple-point geostatistics. This implementation first

assumes an n-dimensional template (h1,h2,…,hn) and then scans the training image by using the template for all n
random variables Z1=z(u+h1),…,Zn=z(u+hn) to derive the experimental conditional distribution of Z(u) at point u. Finally, a

sample value Z(u) is taken from this distribution and assigned to the current grid to be estimated. A sequential-like method

is used here to simulate all grid points randomly.

However, this algorithm has not been very practical due to its excessive computational complexity. With the increasing

demand for modeling complex reservoirs with heterogeneous sedimentary characteristics, a variety of multiple-point

geostatistical methods have been subsequently developed. These methods all perform multiple-point geostatistical

inference through conceptual training images and can be classified into three categories according to their different

simulation methods: (1) probability-based methods, (2) iterative methods, and (3) pattern-based methods.

3.3. Deep-Learning Based Modeling Methods

In the rising stage of the second climax of deep learning, some scholars at home and abroad began to try to use the

neural network method to carry out reservoir modeling research . For example, Yin et al. (1998) used seismic data to

provide attribute distribution trends and converted seismic attribute parameters into reservoir parameters . Zheng et al.

(2007) used a high-order neural network to model porosity and sand body top depth . Caers et al. introduced a neural

network into multipoint geo-statistics to develop a multipoint geological model. However, it has not been widely

popularized due to problems such as difficult training and unstable effect .

At present, the reservoir modeling method based on the third climax of deep learning is in the ascendant, and some

scholars and institutions have paid attention to this field. The research results mainly focus on the reservoir modeling

method based on genetic adversarial networks. The basic idea is  (1) the generator network uses low-dimensional

input to generate high-dimensional geological model output; (2) the generated geological model and the original
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geological model used for training are input into the discriminator network to judge whether the model is generated by the

generator; (3) through mutual confrontation and optimization, the generator network generates a model as close to the

real geological model as possible to “confuse” the discriminator network, so that it is difficult to distinguish whether the

model is generated by the generator network, and the discriminator network identifies whether the model is generated by

the generator network as far as possible until the discriminator network finally cannot distinguish whether the model is

generated by the generator network. That is, the model generated by the generator network can conform to the actual

geological model.

Chan et al. used WassersteinGAN, an improved form of generating a countermeasure network, to realize the channel

background two-phase two-dimensional simulation of channels with different curvature . Laloy et al. proposed SGAN to

introduce the Markov Monte Carlo method into the generation countermeasure network to generate low-dimensional input

and realized three-dimensional and multiphase simulation . DuPont et al.  and Zhang et al.  further improved the

training process of generating a countermeasure network, proposed a conditional simulation modeling method that meets

both the geological model and well point hard data constraints, and reproduced the non-stationary state, which is difficult

to deal with in traditional multipoint geostatistics. In addition, Mosser et al. used a convolution generation countermeasure

network to carry out three-dimensional modeling of the core pore structure . Exterkoetter et al. used convolution to

generate a countermeasure network to realize phase modeling based on seismic inversion data . At present, the

relevant algorithms and application verification are still in the stage of rapid development, and new research results

continue to appear . In addition, the PCA, MAF, PPMT, and other multivariate transform methods can be applied

in the data preparation procedure for the deep-learning approaches dealing with the multivariate analysis .
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