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Block-based perceptual encryption (PE) algorithms are becoming popular for multimedia data protection because

of their low computational demands and format-compliancy with the JPEG standard. In conventional methods, a

colored image as an input is a prerequisite to enable smaller block size for better security. However, in domains

such as medical image processing, unavailability of color images makes PE methods inadequate for their secure

transmission and storage. A PE method that is applicable for both color and grayscale images is proposed. The

EfficientNetV2-based model is implemented for automatic tuberculosis (TB) diagnosis in chest X-ray images.
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1. Introduction

Cloud services provide a cost-effective solution to meet the Information and Communication Technology (ICT)

needs of an organization. The organization can use ICT resources, services and software of a Cloud Services

Provider (CSP) via the internet without a necessity of internal infrastructure or hardware on-site installations. With

the recent success of Machine Learning (ML) in the field of computer vision, automatic computer aided diagnosis

(CAD) systems have emerged in healthcare organizations to assist doctors and practitioners. Particularly, Deep

Learning (DL), a subfield of ML, has achieved state-of-the-art performance for image classification . However, DL

models are compute-intensive tasks, and their training requires cutting-edge technology and high computational

resources. In this regard, healthcare organizations can avail cloud-computing services to access the latest

technology in order to speed up the training process and allow DL models to scale efficiently with a lower capital

cost . In addition, training DL models requires a large volume of sample data, which in some cases such as the

medical domain, is expensive and difficult to acquire. To overcome this issue, healthcare organizations can benefit

from a community cloud, where services are shared by organizations with common interests. In this case, cloud

storage services can be used as a shared central data repository for joint projects and collaboration among the

organizations. However, like all communication systems, when data are outsourced for cloud services, there is

always a risk of information leakage and a large volume of data requires high bandwidth .

Compression and encryption are two processes that satisfy the dual requirements of data transmission over

bandwidth constraint and public channels. Image compression gives a compact representation to an image such
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that it requires less number of bits. It can be achieved either in lossless or lossy mode. In lossless compression, an

image can be recovered with almost the same quality as that of the original image, whereas in lossy mode the

image quality degrades. Compared to lossless mode, lossy compression offers better savings; however, resulting

quality degradation in lossy mode may not be acceptable in certain domains. For example, medical images contain

information crucial for correct diagnosis of diseases; therefore, their compression should be carried out in such a

way that the diagnostic information remains intact in them while their sizes are reduced . One of the popular

approaches to achieve this goal is to compress the region-of-interest (ROI) necessary for diagnosis in lossless

mode and non-ROI in lossy mode . Such methods can achieve a significant reduction in the image size

while preserving its important details. However, they require segmentation of an image beforehand, which is

computationally expensive and is a target task to be performed using cloud-computing resources. Therefore, ROI-

based methods are not suitable for efficient image data transmission .

Encryption makes image data unintelligible, which can only be recovered by its inverse decryption process. The

number theory and chaos theory-based encryption algorithms are proven efficient for securing image data .

These conventional encryption algorithms perform stream encryption and/or scrambling of pixel values; however,

they are only suitable for encrypting raw images. For example, the JPEG compressed image consists of format

markers and any changes in them by an external operation will leave the image uninterpretable. Similarly, re-

encoding a cipher image as a JPEG image results in file size increment. Different from other form of data,

encryption of image data can be carried out only by disrupting their intrinsic properties. For example, changing

pixel correlation and/or redundancy in an image can result in an unintelligible image with a necessary level of

security. Based on this observation, a new class of encryption algorithms has been emerged called Perceptual

Encryption (PE) algorithms to meet the aforementioned requirements of encrypting compressed images. The main

idea is to reverse the conventional order of performing compression prior to encryption. PE performs block-based

operations that hides only perceptual information of an image, thereby preserves image intrinsic properties

necessary to carry out computations in the encryption domain. For example, refs.  proposed PE methods for

enabling privacy-preserving DL applications. In addition, PE cipher images are JPEG compressible, which makes

them suitable for numerous applications, such as cloud photo storage and social networking services  and

image retrieval in the encryption domain . Nonetheless, PE methods are resilient against various attacks,

including brute-force and cipher-text-only attacks .

Based on an input image representation, PE methods can be grouped as Color-PE and Grayscale-PE methods.

The Color-PE represents an input color image as a three-component image and uses same encryption keys for

each component , whereas their extended versions encrypt each color component independently . The

latter methods have larger keyspace as they have increased number of blocks. However, this increment is limited

by the smallest allowable block size in the JPEG algorithm, for instance, block size no smaller than 16 × 16 should

be used for color image compression. This recommended size is necessary to avoid block artifacts resulted from

the JPEG chroma-subsampling step . Smaller block size such as 8 × 8, can be utilized in the JPEG algorithm

without any adverse effect, for compression of grayscale images. Therefore, to exploit the smaller block size for an

expanded keyspace, Grayscale-PE represents color input as a pseudo-grayscale image by combining the color
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components along the horizontal or vertical direction . Overall, in conventional methods, color image as an

input is a prerequisite for better security.

2. Deep Learning-Based Tuberculosis Screening

Grivkov et al.  implemented InceptionNetV3  for diagnosis of TB in Shenzhen (SH) and Montgomery (MG)

datasets  and achieved 86.8% accuracy. Das et al.  exploited transfer learning to improve InceptionV3

accuracy to 91.7% on the same datasets. Priya et al.  implemented transfer learning on VGG19 , ResNet50

, DenseNet121  and InceptionV3 models. In their analysis, pre-trained VGG19 has achieved 89% and 95%

best accuracies on MG and SH datasets, respectively. Cao et al.  implemented DenseNet121, VGG and

ResNet152  models and achieved best accuracy of 90.38% classification accuracy with DenseNet121. Raman

et al.  adopted somewhat different approach than the aforementioned methods. They have used three pre-

trained models (ResNet101 , VGG19, and DenseNet201 ) to extract features from CXR images and use

eXtreme Gradient Boosting (XG-Boost) (1.6.1, Tianqi Chen and Carlos Ernesto Guestrin, Seattle, WA, USA) 

model to classify TB and non-TB in them. In their experiments, DenseNet201 with XG-Boost architecture achieved

the highest accuracy of 99.92% as compared to its counterparts. Munadi et al.  proposed to enhance CXR

quality before feeding them to pre-trained ResNet and EfficientNet  models. They have used three different

image-enhancing techniques (unsharped masking, high-frequency emphasis filtering, and contrast limited adaptive

histogram equalization). In their analysis, EfficientNet with unsharped masking image enhancement achieved

89.92% accuracy on SH dataset. Msnoda et al.  implemented ResNet, GoogLeNet , and AlexNet  with an

extra Spatial Pyramid Pooling (SPP)  layer. Among the implemented architectures, GoogLeNet achieved the

highest classification accuracy of 97%, which was then improved to 98% by using the SPP layer.

The methods discussed so far rely on the architecture of an individual model for classification efficiency. There are

methods that combine two or even more models to form an ensemble network to achieve better performance. For

example, Rajaraman et al.  implemented VGG16, InceptionResNetV2 , InceptionV3, XceptionNet  and

DenseNet121, and then ranked them based on their accuracy. In their experiments, the top-3 models were

InceptionV3 (accuracy = 94%), DenseNet121 (accuracy = 92.8%) and InceptionResNetV2 (accuracy = 92.5%).

They have evaluated multiple ensemble methods to combine the top-3 models such as majority voting, simple

averaging, weighted averaging stacking and blending to make an ensemble network. Their analysis showed that

stacking ensemble demonstrated better performance and achieved 94.1% accuracy. Dasanayaka et al.  have

implemented an ensemble of only two models (VGG16 and InceptionV3), and achieved 97.10% accuracy, which is

higher than the ensemble of the three models proposed in . Oloko-Oba et al.  have implemented an

ensemble of VGG16, ResNet50 and InceptionV3 and achieved best accuracy of 96.14%. In their other study ,

they have explored ensemble of EfficientNets  for the diagnosis of TB. In their analysis of individual models,

EfficientNet-B4 achieved best accuracy of 94.35% on SH dataset, which was then improved to 97.44% through

ensemble learning. The ensemble was built by averaging the performance of three best individual EfficientNets

(B2, B3, and B4). Saif et al.  proposed to combine the traditional hand-engineered feature with an ensemble of

DenseNet169, ResNet50 and InceptionV3 models. Their ensemble model has achieved best accuracy of 99.7% on
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SH dataset. Overall, ensemble methods have shown superior performance for TB screening in CXR images than

the individual models.

3. Perceptual Encryption Methods

The PE algorithm is block-based and performs four steps: blocks permutation, rotation and inversion, negative and

positive transformation, and color channel shuffling. Based on these steps, several methods have been proposed

in literature. They can be classified as Color-PE and Grayscale-PE methods based on their input image

representation. In Color-PE methods, an input color image is represented as a three-component image, whereas

Grayscale-PE methods represent an input as pseudo-grayscale image by concatenating its color components

along the vertical or horizontal direction. In Grayscale-PE methods, the channel-shuffling step is omitted. This

section provides a summary of PE related work.

Kurihara et al.  proposed a block-based Color-PE method that performs the encryption steps on each color

component by using the same key. Since, the input is a color image, larger block size is used to avoid block

artifacts in a decoded image resulted by chroma subsampling of the JPEG algorithm. However, the use of the

same key for each color component and larger block size result in a smaller number of blocks, which make the

scheme vulnerable to jigsaw puzzle attack. To increase the number of blocks for better security, Imaizumi et al. 

proposed to perform the first three steps of encryption independently in each color component. As a result, the

scheme has a larger key space than that of ; however, processing each component individually results in the

JPEG compatibility issues. For example, the method is only applicable with the JPEG lossless algorithm only when

using RGB colorspace. Ahmad et al.  proposed a PE method to deal with the compatibility issue of . In

their proposed schemes, rotation, inversion and pixel values transformations are performed on each color

component independently. The use of a same key for permutation step in each component allows the JPEG

algorithm with YCbCr colorspace for better compression savings. The extended PE methods in  have

better security than the PE method proposed in  as the keyspace is expanded and color distribution is altered

significantly. However, the main limitation of extended PE methods is that they cannot exploit the JPEG chroma

subsampling.

An alternative approach has been adopted by Chuman et al.  that allows the use of a smaller block size. The

main idea is to represent an input color image as a pseudo grayscale image by concatenating the color

components along the horizontal or vertical direction; therefore, belongs to Grayscale-PE methods. Such

representation allows use of a smaller block size without any adverse effect on the decoded image quality and

compression savings. In addition to smaller block size, lack of color information improves robustness against

jigsaw puzzle solver attack. When chroma subsampling is desirable, Sirichotedumrong et al.  proposed to

convert input image from RGB to YCbCr colorspace, perform down sampling on the color components and then

concatenate them with the luminance component. For example, to combine them horizontally, the color

components must be concatenated vertically and vice versa.
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Compared to Color-PE methods and their extensions, Grayscale-PE methods provide better security as their use

of smaller block size increases the number of blocks and pseudo grayscale representation efficiently disrupts the

color information. However, for block-based PE schemes, there is an efficiency tradeoff between compression and

encryption because of the block size choice. For example, a block size of no smaller than 16 × 16 and 8 × 8 should

be used in Color-PE and Grayscale PE methods, respectively.
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