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Consider n data sources with their data represented, respectively, by N , N ,...,N  dimensional vectors, such that  

 . The covariance projection framework of data fusion, or, shortly, the covariance projection filter

(CPF), is based on projecting the joint probability distribution of those N  variables from n data sources onto the

constraint manifold formed in the N  dimensional space, referred to here as the extended space, based on the

constraints present among the N variables. Then, the covariance projection framework of data fusion represents

the projected probability distribution on the constraint manifold as the result of data fusion. For instance, in CPF,

the fused data can be chosen as the point on the constraint manifold that bears the maximum probability, while the

uncertainty associated with the resulting fused data can be defined as the probability distribution around the

chosen point on the constraint manifold. The covariance projection framework of data fusion was initially conceived

by Sukhan Lee and further elaborated into a more formal mathematical discipline by Sukhan Lee and Muhammad

Abu Bakr. It turns out that CPF is equivalent to other well-known data fusion methods such as Kalman filter, Bar

Shalom Campo and generalized Millman’s formula for linear systems with known Gaussian noise either

uncorrelated or correlated. However, CPF provides a general framework of data fusion that allows incorporation of

any system constraints as well as detection of data inconsistency directly into data fusion, besides opening a new

possibility of handling non-linear systems with non-Gaussian noise. In what follows, the mathematical formula of

CPF developed, in particular, for a linear Gaussian system with linear constraint is introduced.
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1. Introduction

The method   first represents the probability of true states and measurements in the extended space around the

data from state predictions and sensor measurements, where the extended space is formed by taking states and

measurements as independent variables. Any constraints among true states and measurements that should be

satisfied are then represented as a constraint manifold in the extended space. This is shown schematically in

Figure 1a for filtering as an example. Data fusion is accomplished by projecting the probability distribution of true

states and measurements onto the constraint manifold.

More specifically, consider two mean estimates,  and , of the state ∈ , with their respective covariances

as ∈ . Furthermore, the estimates are assumed to be correlated with cross-covariance . The
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mean estimates and their covariances together with their cross-covariance in   are then transformed to an

extended space of    along with the linear constraint between the two estimates:

where  and  are constant matrices of compatible dimensions. In the case where   and  estimate the

same entity,  and  become identity matrix . Figure 1b illustrates schematically the fusion of  and  in the

extended space based on the proposed method. Fusion takes place by finding the point on the constraint manifold

that represents the minimum weighted distance from  in , where the weight is given by .

Figure 1. (a) Probability of true states and measurements in the extended space around the data from state

predictions and sensor measurements and constraint manifold (b) Extended space representation of two data

sources with constraint manifold.

Figure 2. Whitening transform and projection.
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To find a point on the constraint manifold with minimum weighted distance, we apply the whitening transform (WT)

defined as, , where  and  are the eigenvalue and eigenvector matrices of . Applying WT,

where the matrix   is the subspace of the constraint manifold.   Figure 2 illustrates the

transformation of the probability distribution as an ellipsoid into a unit circle after WT. The probability distribution is

then orthogonally projected on the transformed manifold  to satisfy the constraints between the data sources

in the transformed space as illustrated in Figure 2. Inverse WT is applied to obtain the fused mean estimate and

covariance in the original space,                           

(2)

(3)

where   is the orthogonal projection matrix. Using the definition of various

components in (2) and (3), a close form simplification can be obtained

as,                                                                                                                                             

Due to the projection in extended space of , (4) and (5) provide a fused result with respect to each data

source. In the case where  and  estimate the same entity, that is, , the fused result will be

same for the two data sources. As such, a close form equation for fusing redundant data sources in  can be

obtained from (4) and (5) as,                                                                                                                              

Given   mean estimates   of a state ∈   with their respective covariances ∈ 

 and known cross-covariances , (6) and (7) can be used to obtain the optimal fused

mean estimate and covariance with .

For fusing correlated estimates from  redundant sources, the CPF is equivalent to the weighted fusion algorithms

, which compute the fused mean estimate and covariance as a summation of weighted individual estimates

as,                                                                                                                            

(4)

(5)
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(7)
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with . Equivalently, the CP fused mean and covariance can be written as,

where   and . In the particular case of two

data sources, the CP fused solution reduces to the well-known Bar-Shalom Campo formula ,

Although equivalent to the traditional approaches in fusing redundant data sources, the proposed method offers a

generalized framework not only for fusing correlated data sources but also for handling linear constraints and data

inconsistency simultaneously within the framework.

2. Detection of Data Inconsistency

The proposed approach exploits the constraint manifold among sensor estimates to identify any data

inconsistency. The identification of inconsistent data is based on the distance from the constraint manifold to the

mean of redundant data sources in the extended space that provides a confidence measure with the relative

disparity among data sources. Assuming a joint multivariate normal distribution for the data sources, the data

confidence can be measured by computing the distance from the constraint manifold as illustrated in Figure 3.

Figure 3. The distance of the multi-variate distribution from the constraint manifold.
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Consider the joint space representation of  sensor estimates ,   

where  is the dimension of the state vector. The distance  can be computed as,

where   is the point on the manifold and can be obtain by using (4). The   distance follows a chi-square

distribution with  degrees of freedom (DOF), that is, ∼χ (N ). A chi-square table is then used to obtain the

critical value for a particular significance level and DOF. A computed distance  less than the critical value mean

that we are confident about the closeness of sensor estimates and that they can be fused together to provide a

better estimate of the underlying states. On the other hand, a distance  greater than or equal to the critical value

indicate spuriousness of the sensor estimates.

3. Incorporation of Linear Constraints

Consider a linear dynamic system model,

where  represents the discrete-time index,  is the system matrix,  is the input matrix,  is the input vector

and   is the state vector. The system process noise  with covariance matrix  and measurement noise 

 with covariance  are assumed to be correlated with cross-covariance . The state ∈   is known to be

constrained as,

(15)

For  ≠ 0, the state space can be translated by a factor  such that . After constrained state estimation, the

state space can be translated back by the factor c to satisfy . Hence, without loss of generality, the 

 case is considered for analysis here. The matrix ∈  is assumed to have a full row rank.

The CPF incorporates any linear constraints among states without any additional processing. Let us denote the

constrained filtered estimate of the CPF  as . Assume  as the predicted state estimate based

(12)
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on the underlying system equation. The extended space representation of the state predictions and measurements

of multiple sensors can be written as,                                                                                                          

                                                                                                                              

Then the CPF estimate in the presence of linear constraints among states can be obtained using (4) and (5) as,

where the  matrix is the subspace of the constraint among the state prediction  and sensor measurements 

 as well as linear constraints   among state variables. The subspace of the linear constraint among state

prediction and sensor measurements can be written as,

Then,  is a combination of  and , that is,

∈

The projection of the probability distribution of true states and measurements around the predicted states and

actual measurements onto the constraint manifold  in the extended space provide the filtered or fused estimate

of state prediction and sensor measurements as well as completely satisfying the linear constraints among the

states directly in one step.
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