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Human action recognition in computer vision is the task that identifies how a person or a group acts on a video
sequence. Early methods that rely on representation-based solutions, like the histogram of oriented gradients
(HOG), local binary patterns (LBP), and motion analysis, have been used to address this problem over the years.
Later works are based on machine and deep-learning techniques, such as support vector machines (SVM), two- or
three-dimensional convolutional neural networks (2D-CNNs, 3D-CNNSs), recurrent neural networks (RNNs), and

vision transformers (ViT), aiming to enhance the performance and reduce bias.

human action recognition mobile-CNNs spatial analysis

| 1. Introduction

Human action (or activity) recognition attempts to determine what action is being performed by an individual or a
group in a video sequence L. Even if this can be considered a simple task, it has puzzled computer vision scholars
for several decades [ZBI4, Throughout this period, human action recognition has been widely adopted by various
scientific fields, such as human—-machine interaction BlE medical assistive technologies WIEIRIL syrveillance
systems 112 sports analysis 28, and human-robot interaction 4151, Similarly, it assists in path planning for
tasks like social collision avoidance and route optimization 18 in autonomous navigation 14, However, the main
reasons why human action recognition constitutes such a challenging task are the following. The first concerns the
environment where the action occurs: entirely different surroundings may present the same act. Additionally, the
direction might vary from one video to another (e.g., a person walks from right to left and vice versa). The second
challenge is related to the sensor’s position, which affects the recorded visual information. More specifically, the
closer the sensor is to the scene, the more detailed information it provides, yet the more negligible the action it
covers. Moreover, the video streams recorded by a steady camera should be perfectly stabilized; otherwise, the
motion adds extra noise to the incoming data. To this end, the large amount of data needed is a common barrier to
efficient solutions. Last is the curse of dimensionality: video sequences used for human action recognition use

more than 500 image-frames with similar information, enlarging the size of the datasets.

Nevertheless, several methods have been proposed to address this problem based on different data types and
techniques, which are mainly distinguished into two categories & The first regards pipelines that apply
representation-based solutions, such as global 81911201 |ocqa| (1811921221 5nd depth [23124] pnes. On the other
hand, techniques of the second category concern frameworks implemented with deep-network-based pipelines,

such as convolutional neural networks (CNNs) [22l. Despite the promising results of the former systems, their need

https://encyclopedia.pub/entry/53034 1/14



Spatial and Temporal Human Action Recognition Analysis | Encyclopedia.pub

to adapt to changes (e.g., environmental, frame background, or camera motion) between videos containing the
same action presents a disadvantage. In contrast, the latter can adjust to the above challenges, showing
remarkable outcomes in different computer vision and robotics tasks 28 (e.g., image recognition 24, object
detection (2829 visual-based navigation BB place recognition 2331341 |oop closure detection 22138] and video
description B7). In particular, these approaches use two-dimensional CNNs (2D-CNNs) that receive a grid of
values as input (i.e., an image) and subsequently perform spatial analysis via 2D convolutional filters. This way,
they keep most of the image’s information while reducing its dimensionality 8. To this end, many CNN
architectures have been proposed in the previous years, reaching improved performances (viz., LeNet 22 AlexNet
49 GoogleNet or InceptionNet 1 BN-Inception 2 VGGNet 24, and ResNet [43)). Still, many trainable
parameters are retained in these models, rendering their training process time consuming (i.e., more than a week
when employed on ImageNet 44145]) even if modern graphics processing units (GPUs) are used. Because of this,
mobile-CNNs (viz., YOLO [28 MobileNet-vl [8 MobileNet-v2 ©4  ShuffleNet-vl [“8  SuffleNet-v2 19
NASNetMobile Y, FBNet B, EfficientNet-b0 22, MobileNet-v3 B3l and GhostNet [24)) were designed with fewer
trainable parameters, simultaneously maintaining high outputs. In most of the cases, when 2D-CNNs are employed
for human action recognition, these are large architectures 551, such as CNN-M-2048 B8IBTS8] \which is similar to
ClarifaiNet B2 AlexNet 69 VGGNet BL62I63] ResNet 64165 GoogleNet B4, and BN-Inception BLEE When
mobile versions are used, these include MobileNet-v2 BB and EfficientNet-b0 B8], Vision transformers (ViT) B,
which were recently introduced for different computer vision tasks (such as image classification 9, object
detection 4, image segmentation 22, and action recognition [Z8IZ478 \vere inspired by their success in natural
language processing Z8. However, while they show dominance over CNNs 78] they are characterized by high-
complexity models in accordance with their demands for large-scale datasets 79, On the contrary, lightweight
models, such as Swin-T [BY MobileViT Bl and EVA-02-Ti 2, have also been applied, showing high

performances.

| 2. Human Action Recognition through 3D-CNNs

As 3D convolutional filters can be applied to a sequence of consecutive images, performing spatial and temporal
analysis simultaneously, 3D-CNNs have been proposed for human action recognition. Using a set of such models
and capturing the video’s visual appearance and motion dynamics, the authors in (3! propose a framework where
the final prediction results from all the used models. Their pipeline is based on several architectures, giving better
outcomes for different datasets. Nevertheless, they mention drawbacks, such as the high complexity and
computational cost. Aiming to tackle this weakness, Sun et al. 84 simulate the 3D-CNN function utilizing 2D
kernels at the first layers for spatial analysis, with 1D kernels following for the temporal analysis. Combined with
improved dense trajectories (iDT) 21 and a linear support vector machine (SVM) classifier, C3D 83 a model
employing 3 x 3 x 3 convolutional kernels to every layer, can achieve better results if it is previously trained on
I380K B3], Aiming to gain the high performance of 3D-CNNs in parallel with the low complexity of 2D-CNNs, Lin et
al. [88] suggest a temporal shift module (TSM) that can be applied to 2D-CNNs without increasing the latency of the
system. The basic concept lies in shifting parts of the channels through the time dimension, aiming at the

information division between adjacent frames. More specifically, two strategies are introduced. The first concerns
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offline approaches, wherein all frames are processed, while the second regards the online systems, indicating that
only the last frames are available during real-time activity recognition. In particular, the former utilizes a two-
directional (+1 or —1) displacement, while during live demonstrations, the relocation happens only in one direction

(+1). Lastly, ResNet-50 is adopted as the backbone network.

| 3. Human Action Recognition through Multiple-Stream CNNs

Two-stream CNN models perform spatial and temporal analysis via different 2D-CNNs that are trained separately
7 and the final prediction comes after the networks’ later fusion. Specifically, the first 2D-CNN, responsible for
spatial analysis, receives static RGB images as input, while the second network accepts a stack of dense optical
flows between several consecutive images. The latter improves the framework’s outcome as it is invariant to visual
appearance, even when temporal coherence is not retained BZ. Therefore, temporal analysis is provided by the
optical flow data. In a later work, Feichtenhofer et al. evaluate different fusion types, such as in a convolutional
layer instead of the softmax layer B8 Three different architectures, ClarifaiNet, GoogleNet, and VGGNet-16, are
tested in (28], showing that the latter model is outperformed on spatial stream. At the same time, the performance of
each network is improved on the temporal streams when they have previously trained on ImageNet. Since 3D-
CNNs can learn spatiotemporal features only from RGB images, improved performance is attained when they are
utilized with optical flows. The authors in 2 propose a two-stream 3D-ConvNet, wherein a 3D-CNN, called 13D, is

used in each stream instead of a 2D-CNN. Previously trained on kinetics-400, 13D showed improved results 29,

Similarly, C3D [83 js employed in the two-stream CNN by the authors in 21, where two different types of fusion are
tested. The first adopts a late fusion on the results provided by softmax average scores. The second uses an early
fusion. Specifically, the vectors generated by the first fully connected (FC) layers are concatenated, creating a
singular vector, which is subsequently loaded to an SVM. During training, a random frame is chosen from each
video as input for the spatial stream. At the same time, an optical flow set of five or ten consecutive images is
selected for the temporal stream 7. Zhu et al. increase the accuracy by applying an end-to-end training protocol
to both the spatial and temporal streams 881, Their method is based on samples of 25 RGB images and optical flow
stacks from each video. Aiming to achieve this result, at each epoch, the BN-Inception “2 model's last
convolutional layer outputs end up in an FC layer via temporal pyramid pooling (TPP). The final prediction comes
from the fusion of the spatial and temporal streams. Additionally, Feichtenhofer et al. 22 present a framework
based on a two-stream 3D-CNN 231 wherein each model runs on different frame rates. Specifically, the one
concerning the slow stream utilizes a low frame rate and is responsible for the spatial analysis. On the contrary,
more frames are applied during rapid frames, aiming to handle the temporal analysis. The backbone networks
ResNet-50 and ResNet-101 are also evaluated. Finally, apart from the video classification, the task of action

detection is also tackled with high performance.

Because of the optical flow's high computational complexity, motion vectors are also proposed for lightweight live
action recognition 24!, Similarly, Kim and Won 23 propose a stacked gray-scale three-channel image (SG3l) to
replace the optical flow data and achieve faster implementation. Zong et al. use two additional streams, a spatial-

saliency and a temporal-saliency stream, which capture the salient object and salient motion information,
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respectively, by taking as input sampled saliency maps. These two spatial and temporal streams create a four-
stream feature extractor 62, Huo et al. B3 propose a temporal trilinear pooling pipeline for lightweight action
recognition, where three modalities are generated from compressed videos (viz., I-frames, motion vectors, and
residuals serve as inputs to the framework). The CNN used as the backbone is MobileNet-v2, and three versions
are employed, each dedicated to one of the three modalities. Finally, a processing speed of 40 frames per second
is achieved on a mobile device. In €8 a multi-head attention mechanism 8 is applied after EfficientNet-bo, used
as the backbone network to address the action recognition task based on BZ. The use of an attention module has
been shown to improve performance in both spatial and temporal streams across all the examined networks

serving as backbones, namely ResNet-18, ResNet-34 43l ResNet-50, and the proposed EfficientNet-b0.

4. Human Action Recognition through Temporal Segment
Networks

In temporal segment networks, each video is divided into three equal segments, wherein a snippet of each
segment is randomly selected as an input of the two-stream CNN. Next, this input is applied three times in each
video 28, Finally, a segmental consensus function, such as max, average, or weighted average, is used for the
spatial and temporal prediction before the fusion. This sampling strategy provides relevant information from the
entire video, and learning is performed regardless of size. At the same time, the execution time and the system’s
complexity remain constant. Instead of taking the segmental consensus function’s result as the final prediction for
spatial and temporal streams, one more training step is employed in (81, BN-Inception or VGGNet-16 is used as a
feature extractor for the video’s three segments, aiming to train two separate SVMs for spatial and temporal
analysis. This way, false matches between videos and labels are limited since the SVM’s final prediction comes

from the feature extractor referring to the video’s three segments.

| 5. Human Action Recognition through CNN + RNN

Recurrent networks can be a valuable tool in human action recognition as a video is a temporal sequence of
images. With that in mind, several techniques have been developed that use CNNs as feature extractors for
feeding into a recurrent network, such as RNN, long short-term memory (LSTM) B4, or gated recurrent unit (GRU)
(98] AlexNet and GoogleNet, previously trained on ImageNet, are tested on two frameworks for activity
identification Y. The first method was explored using several types of pooling architectures, such as convolution
pooling, late pooling, slow pooling, local pooling, and time-domain convolution, on the output of convolutional
layers aiming to make the final prediction. Their findings show that convolution pooling outperformed the other
architectures. The second pipeline connected an LSTM to the last convolutional layer outputs, intending to
synthesize the temporal dynamics of the input stream. Five stacks of LSTM layers are used, followed by a softmax
classifier to predict each frame. However, adding optical flow improved the performance in the LSTM approach but

not in the convolutional pooling.
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In B7 an end-to-end trainable hybrid model, entitled long-term recurrent convolutional network (LRCN), consisting
of a CNN and an LSTM, is proposed. More specifically, the used CNN is a minor variant of AlexNet, called
CaffeNet 29, that has previously been trained on ILSVRC-2021 43, LRCN is trained to predict the action at each
time step, and the final prediction comes from sixteen clip-frames. It is worth noting that using optical flow
enhanced the performance compared to the framework using RGB images. In another work by Carreira and
Zisserman 2, four human action recognition techniques are compared with the two-stream 13D. Among them, one
uses InceptionNet-v1l's last average pooling layer, trained on ImageNet, as a feature extractor, with an LSTM
following. During training, the cross-entropy loss is applied to the output of all time steps. However, CNN + LSTM
and 3D-CNN are the only ones that do not apply the frame’s optical flow, showing the lowest performance. AlexNet,
previously trained on ImageNet, is used as a feature extractor to accomplish the spatial analysis 199, Moreover,
consecutive frames, in step six, are chosen to feed into a bi-directional LSTM to avoid using redundant frames
without losing the action sequence. Similarly, VGGNet-16 trained on ImageNet is employed for the images’ feature
extraction in (62, Backpropagation is utilized only for the last eight layers of the network when the model is trained
on the target dataset. Subsequently, thirty extracted vectors constitute the bi-directional LSTM input, from which
the final prediction is derived. Ahme et al. 621 use MobileNet-v2 trained on ImageNet as a feature extractor. Their
network’s last layers are frozen when trained on the target dataset, and new layers are added for fine-tuning. After
each video frame is transformed via the network, it is fed to a GRU aiming to make the final prediction. Zhang et al.
(63l propose a method that combines three of the techniques above, wherein separated VGGNets are used for both
spatial and temporal streams. In addition, the video is divided into k segment networks as proposed by 28, while

the prediction is carried out by loading to a Bi-LSTM the fused features from the convolutional layers.

Finally, it is worth noting the significance of the features represented by CNNSs, as they have a crucial role in the
technigues mentioned earlier. These features are fed into the RNNs to perform the temporal analysis and predict
the action within a video. Gao et al. 29 propose the Res2Net module as an alternative to the bottleneck block,
achieving in this way the capture of more and richer information from the input image, enhancing the features. This
improvement is done by dividing the input map into smaller segments. Each part, apart from the first one, is
transformed by a 3 x 3 convolution, with the output of the previous convolution being added to the input of the next
one. Finally, all the outputs are merged back into one map, and a last 1 x 1 convolution is applied, similar to the

initial bottleneck block.

| 6. Skeleton Data Approaches

When only RGB data is used, skeleton data is often utilized for human action recognition as it provides a greater
amount of information regarding the pose of an individual, which is directly related to the type of activity. Graph
convolutional networks (GCN) have been used to tackle the action recognition task through skeleton data 192
where each joint is defined as a node, and the connections between the joints are considered as the edges. To
address the high computational cost of GCNs, Cheng et al. 193] have proposed the shift GCN. In this approach, the
features of the adjacent joints are loaded to its current 1 x 1 convolution node. Furthermore, in 294 the spatial-

temporal GCN (ST-GCN) has been presented. Multiple skeleton data are fed into multiple ST-GCN layers to
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achieve action recognition according to the changes in the graphs over time. As ST-GCN requires complex pre-
processing of the input, Peng et al. 193 proposed a framework that captures the features between sequential
graphs but with a lower computational cost, achieved by transforming them into three dimensions. Finally, in 196
the joint-bone fusion GCN is presented, which combines two streams, one for the bones and one for the joints,
aiming to analyze the relationship between these two dependencies. Additionally, a pose estimation transformer is

applied for semi-supervised training.
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