GD-AZO Composites | Encyclopedia.pub

GD-AZO Composites

Subjects: Nanoscience & Nanotechnology

Contributor: Anuja Bokare

Graphene represents a new generation of materials which exhibit unique physicochemical properties such as high
electron mobility, tunable optics, a large surface to volume ratio, and robust mechanical strength. These properties
make graphene an ideal candidate for various optoelectronic, photonics, and sensing applications. . In recent
years, numerous efforts have been focused on azobenzene polymers (AZO-polymers) as photochromic molecular
switches and thermal sensors because of their light induced conformations and surface-relief structures. However,
these polymers often exhibit drawbacks like low photon storage lifetime, energy density and aggregation. These
issues can be alleviated by incorporating graphene derivatives (GDs) into AZO-polymers to form orderly arranged

molecules like GD-AZO composites.

graphene quantum dot graphene oxide azobenzene composite photoresponsive

photonics thermal

| 1. Introduction

Nanotechnology stands at the forefront of humanity’'s most fervent desires of progression in virtually all aspects:
health, engineering, space exploration, and tying these all together—nanomaterials. Graphene derivatives (GDs)
have led to a new generation of multifunctional nanomaterials with unique properties such as a large surface area,
a tunable microstructure, an adjustable bandgap, high electronic conductivity, robust mechanical strength, and
thermal storage 2, Properties of GDs can be modulated by functionalization, i.e., coupling them with a variety of
compounds that lead to new building blocks with advanced properties B4, Functionalization provides avenues for
interfacial interactions enabling better dispersion or solubility samples, leading to improved processability B8],
Thus, many efforts are directed at amalgamations of different materials with GDs to form more sophisticated and
effective structures with greater potential for various applications W& Among the variegated nanomaterials
composited with GDs, photochromic compounds could be a perfect choice for GDs’ functionalization needed for

optoelectronic and thermal applications ZLLL12]

Photochromic materials can undergo reversible photo-triggered isomerization between (at least) two (meta)stable
states that exhibit distinct spectroscopic and physical properties 131, Various types of photochromic materials are
currently considered as viable candidates for reversible information storage and optical switching applications 14
(131 Among them, the most extensively studied photochromic compounds are azobenzene polymers (AZO-
polymers). The light-induced conformations of azobenzene chromophores can result in large and stable in-plane

anisotropy, nonlinear optical responses, and inscription of surface relief structures onto a material system [18](27[18]
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(291 The photoisomerization of azobenzene moieties in interactive molecules or groups results in the distinctive
switching of chemical, optical, steric, thermal, and electrical properties of functional composites, enabling them to

be beneficial for various photonic and electronic applications 221211,

Recently, GDs functionalized in AZO-polymer complexes have been explored for producing a moiety capable of
photo-modulation and solar thermal storage [22l23124125]  Two-dimensional structures of GDs are an excellent
platform for assembling close packed order AZO molecules. This allows for high density grafting, high
intermolecular interactions, and steric hindrance which can be used to control steric configurations and functional
groups in a composite system 28127 Graphene derivative/azobenzene (GD-AZO) interactions lower the energy of
the trans-isomer and stabilize the cis-isomer, leading to remarkable increases in both AH and t;,, of the molecules
(22 The introduction of GDs in AZO-polymers also prevents the undesired aggregation effect which is detrimental
for their optical response. In addition, GD-AZO composites exhibit extraordinary optical and electronic properties,
including efficient charge transfer, enhanced quantum yield, changed electrical field, remarkable photo-stability and

ultrafast kinetics 2811231, As such, it is crucial to review the intellectual progression rendered in this field thus far.

2. Properties of GDs, AZO-Polymers, and GD-AZO
Composites

2.1. Properties of GDs

Novoselov et al. separated and characterized an atom-thick sp?-hybridized carbon nanosheet and defined it as
“isolated graphene” in 2004 B9, Since its discovery, this nanomaterial has propelled enormous scientific and
technological interest due to its unique properties such as a large specific surface area, easy functionalization,
controlled photoluminescence, high mechanical strength, chemical stability, and high electronic conductivity . GO
and GQDs are subsets of the graphene family which are usually derived from graphene by exfoliation reactions.
The structures of graphene, GO nanosheets, and GQDs are shown in Figure 1. GDs (e.g., GO, reduced graphene
oxide, GQDs) have proven to be effective coupling materials for many polymer nanocomposites because of their
ideal material properties and dispersibility in polymer matrices 21l The tight packing of sp? carbon, their electronic
conjugation, and TI—Tt transitions demonstrate their use in various sensor and optoelectronic devices 22831, This

review intends to highlight the properties of GDs as coupling agents for AZO-polymers.

Graphene Graphene Oxide GQDs

¥ Epaxy group @ Hydraxyl group (0 Carboxyl group @) Carbonyl group

Figure 1. Structure of Graphene, Graphene Oxide and GQDs.
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2.2. Properties of AZO-Polymers

Azobenzene is an aromatic molecule in which two phenyl rings are bridged by an AZO linkage (—N=N-). The
extended conjugation exhibited by these molecules gives rise to their strong absorption in UV and VIS light ranges
(341 Owing to their colorant properties, AZO-polymers have been used as dyes and pigments for over 170 years
(331 However, photochromic properties and reversible trans = cis isomerizations of these materials were elucidated
in the first half of the 1900s B8I371, Trans = cis photoisomerization is the basic molecular level process in which a
thermally stable trans-state is converted to a metastable cis state upon the absorption of a photon B8 This
photoisomerization leads to the dramatic changes in the properties of azobenzene including their optical

absorption, redox behavior, optical linearity, and surface relief gratings (SRGS).

2.3. Properties of GD-AZO Composites

The functionalization of GDs such as GO and GQDs with AZO moieties is essential to modulate properties of
composite systems which can be further tuned for use in various applications. For example, functionalization with
GDs improves the stability and dispersion of AZO moieties in water which is very important for their biological
applications 2. In addition, GD-AZO composites show extraordinary optical and electronic properties, such as
efficient charge transfer, enhanced quantum vyields, changed electrical fields, remarkable photostability, and

ultrafast kinetics.

| 3. Synthesis of GD-AZO Composites

The efficient integration of photo-responsive azobenzene into GDs is an important factor in manipulating their
thermal and electrical properties, potentially making them easier to work with in a wider range of applications. The
fundamental factor involved in the synthesis of a GD-AZO composite is the interaction between surface functional
groups present on the GDs, and small functional groups present on the AZO-polymer chains. For optimum
interaction, GDs and the AZO-polymer matrix must be highly soluble in a common solvent. This enables the
composite to be synthesized in a way that charge transfer can be maximized. Maximized charge transfer at the
interface is important for the fabrication of high-performance conducting nanocomposites. The interaction chemistry
between GDs and AZO-polymers includes covalent and non-covalent functionalization. In both cases, it is
important to have a well-defined connection between GDs and azobenzenes; if the interaction is weak, the
composite formation turns out to be inefficient for most desirable applications 23, Bujak et al. explain how
covalently functionalized systems possess an advantage over non-covalently functionalized systems by leading to
improved thermal stability of the azobenzene, without conferring the disadvantages of “guest—host” AZO systems
49 |n this regard, covalent functionalization is more advantageous than non-covalent. However, a drawback of
covalent functionalization on a graphene surface is the deterioration of the properties related to the transport of
electrons or phonons due to the conversion of sp? carbon into sp3. The functionalization and various types of

linkages between the GDs and azobenzenes are summarized in Figure 2.

https://encyclopedia.pub/entry/14938 3/12



GD-AZO Composites | Encyclopedia.pub

oy

o= o

g lg™ [@
““)g“*_.h{“‘i‘m Y

i lia B el N
o= = B gy

U 9

(5]

Graphene Quantum Dot Azobenzene Graphene Oxide

Bonding/Covalent b
&
0

0 .. IITJQSMC

< Covalent Bond >

Non-Covalent

Cutt
Van der Waals

Figure 2. Synthesis strategies for GD-AZO composites 411,

3.1. Covalent Linkages

Covalent functionalization involves strong molecular bonding between GDs and azobenzenes, which inevitably
results in partial damage of 1t-conjugated structures. However, strong chemical bonds at an interface facilitate
precise control and modulation of electronic properties of the composite material, contributing to efficient charge or
energy transfer and quantum effects 4243l Many GD-AZO composites synthesized by covalent functionalization
develop non-covalent interactions after composite formation, significantly influencing the properties of the

composites.

GO and GQDs have carboxylic and other functional groups on their surfaces that can be readily used for covalent
modifications 4], Condensation reactions, such as diazotization and amidation reactions, are the preferred
approaches. The carboxylic groups on the surfaces of GDs are activated by generating the corresponding acid

chloride which reacts with suitable azobenzene moieties carrying OH or NH, reactive groups.

3.2. Non-Covalent Linkage

Non-covalent attachment enables GD-AZO composites to preserve high-quality Tt-conjugated structures 22!, This

induces macroscopic effects such as photoisomerization, photocontrol molecular alignment, and photoinduced
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surface patterning in the composite molecule 8. Non-covalent functionalization usually occurs by physical

adsorption of modified azobenzene molecules on GDs using -1t stacking and electrostatic interactions.

| 4. Characterization Techniques

The functionalization of GD-AZO composites through covalent and non-covalent stacking or polymerization has
been explored by various characterization techniques. These techniques mostly rely on material property changes

induced by covalent and non-covalent functionalization. Some of these techniques are discussed below.

4.1. Fourier Transform Infrared Spectroscopy

Fourier-transform infrared (FTIR) spectroscopy is the most common technique for characterizing chemical
functional groups present in the polymer nanocomposites. The shift in the IR wavenumbers after functionalization
can be qualitatively correlated with the covalent or non-covalent interactions between GDs and AZO moieties 7.
The major bands that appear in the composites are due to the presence of aromatic rings, AZO chromophores (-
N=N-), C-N stretching, along with other bands. Some of the major functional groups present in the FTIR spectra of

the composites and their corresponding wavenumbers are listed in Table 1 (8],

Table 1. Functional groups present in GD-AZO composites.

Wavenumbers
Assigned Functional Groups

(em™)

3434 O=H Stretching

1728 C=0 Stretching

1640 C=C Stretching

1386 C-0 Stretching

1060 C-O-C Stretching
1581 N=N Stretching
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Wavenumbers
Assigned Functional Groups
(cm™)
1297 C—N stretching
3060 C—H stretching
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Amide linkage ater.
Covalent -
€ . Resistive random-access =
GO Poly (N-vinylcarbazole) (53]
- memory
Amide linkage

65. Chen, S.; Bao, L.; Ou, E.; Peng, C.; Wang, W.; Xu, W. A Cationic Azobenzene-Surfactant-
Modified Graphene Hybrid: Unique Photoresponse and Electrochemical Behavior. Nanoscale
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Graphene Azobenzene Linkage Method
Application Reference
Derivative Derivative (Type of Linkage)
Covalent
GO Azobenzene Photoswitches [49]
Amide linkage
. . . Covalent
Amino functionalized ) 58
GO b Photoswitches (58]
zobenzene -
Polyimide method
. Noncovalent
Polyazo (Bismark-Brown - o ] 5g
RGO v Chemiresistor for dissolved O, [59]
) Ti—Tt stacking
Chemiresistor sensor for
Pol Bi B Noncovalent _ _
e olyazo (Bismark-Brown - mitochondrial [60]
Y) .
TI—Tt stacking )
Oxygen consumption
Noncovalent
-type diode
RGO and Ti—Tt stacking PP 61
Azobenzene nanocluster [61]
GO n-type diode
and direct P
immobilization
Noncovalent
R-GO Azobenzene BNB-t8 Nonlinear optical material (59]
TI—TT stacking
Covalent
RGO Azobenzene from cardanol Photoswitches (52]

And Noncovalent
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Graphene Azobenzene Linkage Method
Application Reference
Derivative Derivative (Type of Linkage)
RGO Bis-azobenzene Covalent bonding Solar thermal storage [62]
Noncovalent
Au-doped
Gemini Azo . Photoswitches [63]
Photochromic
RGO -
stabilizers
. Noncovalent Fluorescent Probe and
Azobenzene derived from 64
GQDs [64]
cardanol ) .
Hydrogen bonding IMPLICATION logic gate
Noncovalent
GO Cationic surfactant azo Photoswitches [65]

Photochromic

stabilizers
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