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Video monitoring systems (VMSs) operated throughout an extensive railway area are responsible for the safety of people

and property transport processes. Emissions of radiated electromagnetic interference generated in an unintended manner

by traction vehicles within a railway line lead to interference in the VMS operating process. Based on the knowledge of

actual VMS operating process data, spectral characteristics and values of individual components of disturbing signals

occurring in the emissions of radiated electromagnetic interference, it is possible to determine the parameters of damage

intensities for the devices and elements of this system. Using that data enables determining the VMS reliability

parameters within its operating system, for an extensive railway area. 
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1. Introduction

Video monitoring systems (VMSs) are one of the most important electronic security systems (ESS). They operate in

buildings, open areas, parking lots, logistics bases, airports, etc., and extensive public and railway areas .

Depending on the operational mode within extensive areas in warehouse and railway facilities, VMSs can be divided into

two groups:

Stationary, i.e., operated in facilities permanently set on the ground (foundations), e.g., railway stations, platforms,

tunnels, level crossings, turnpikes, underground passages, warehouses and logistics bases storing spare parts, repair

workshops, parking spaces—parking lots, warehouse buildings, driveways, etc. ;

Non-stationary (facilities not permanently fixed to the ground)—e.g., locomotives, electric multiple units, electric

locomotives, passenger and freight carriages, trucks, mass transit vehicles and vehicles intended for transporting

various materials, etc. .

Both VMS and all ESSs (especially the fire alarm system—FAS) must send information on their ongoing technical status

via two independent telecommunication channels to an Alarm Receiving Centre (ARC) or the State Fire Service (PSP) .

The most important ESS operational technical states include the states of alerting, monitoring and damage, whereas the

latter is sent only to ARC in the case of FAS . The use of two independent telecommunications channels to exchange

information within security systems is associated with ensuring a certain level of reliability, especially in the case of

alerting states . In the case of stationary and non-stationary VMSs within a railway area, the facilities of which are

classified as the so-called state critical infrastructure (SCI), it is essential to ensure proper organization of the entire

system notifying of threats within a railway area and not only the VMSs . This is why the following

telecommunications lines are set up for stationary and non-stationary VMSs:

Stationary VMS—Permanent telecommunications link in the form of a leased telephone line using a railway optical fibre

network (protected against wide-frequency band electromagnetic interference within the railway area), as well as a

wireless (encrypted) link with a modular signal, which is IT-protected against an intentional third-party and internal

attack ;

Non-stationary VMS—Two independent wireless telecommunications links utilizing various transmitter carrier

frequencies, modulated with a digital signal in alarm control units (ACU), which are resistant to electromagnetic

interference generated within an extensive railway area, encrypted with appropriate transceiving antenna

characteristics .

[1][2][3]

[4][5][6]

[7][8][9]

[10]

[11]

[12]

[12][13]

[14][15]

[16][17]



In addition, in the case of stationary and non-stationary VMSs, all technical facilities that utilize this system shall be

equipped with a local device for recording video-recorder signals of specified external memory size, the technical

parameters of which are set out in domestic regulations (e.g., stadiums) .

A supplementary and very important issue associated with the VMS and ESS operation process is ensuring specific

power supply reliability for these systems operated in a stationary and non-stationary manner . ESS shall have

ensured basic power supply—from an industrial power grid (stationary facilities) or via transducers from a railway

overhead contact line (3 kV DC) (non-stationary facilities) . Backup power supply, most often in the form of a battery

bank of specific capacity determined by the power balance, is organized in order to guarantee proper ESS functioning in

the event of basic power supply failure. This guarantees the functioning of these systems in the monitoring and alerting

modes for a time specified by regulations and standards . Information on the technical condition of a backup power

supply (e.g., battery bank or UPS voltage level, etc.) shall be monitored continuously by the security system alarm control

unit, and the information regarding this parameter should be sent to ARC, just like other security signals. In addition,

battery banks are located in a metal housing with ACU. The metal housing is locked with a coded lock. In addition, it is

monitored with an anti-tampering contact, which generates an alert signal in the event of an unauthorized opening .

An extensive railway area experiences a distorted electromagnetic environment generated by stationary (radio

transmitters and TV transmitters, GSM-R, power supply and overhead contact network, etc.) or non-stationary (electric

multiple units, rail carriages, portable security system transmitters, etc.) radiation sources . Electromagnetic radiation

within a railway area is generated intentionally—e.g., wireless signals of security systems, cellular telephony such as

GSM—these signals will be used by authorized railway services. Other sources generate unintentional electromagnetic

radiation—e.g., power supply, railway overhead traction lines, high current and voltage consumers—e.g., traction

converters, locomotive motors present within these areas . Electromagnetic interference generated within a railway

area is characterized by a very broad spectrum, from low (single Hz) to very high (single GHz) frequencies. This is due to

this railway system accumulating various sources of radiation used by railway workers, as well as power supply and

overhead contact line systems used by the pantographs of electric locomotives to draw high-value current (in the order of

several dozen kA) upon startup for a short period. It is a serious problem related to the distortion of the electromagnetic

environment within such a railway area. Therefore, conducted and radiated interference shall be considered . The

selected aforementioned issues of ESS and VMS operation throughout an extensive railway area are presented in Figure
1.

Figure 1. Operational issues, i.e., environment, electromagnetic interference, legal restrictions, telecommunications, etc.,

resulting from VMS within a railway area.

Figure 1 shows only the selected operational aspects of ESS use within an extensive railway area. The geometric figure

in No. 12 shows examples of regions with low and high-frequency band electromagnetic interference originating only from

overhead contact lines and systems supplying the entire railway area. High-frequency band electromagnetic interference,
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so-called radiated interference, occurs throughout the railway area, and its value depends on, among others, distance

from the source of a signal generated intentionally or unintentionally.

2. Emitted Radiated Interference Generated by a Selected Rail Traction
Unit on the Operating Process of Trackside Video Monitoring Systems

Variable environmental conditions, a change in low- and high-frequency electromagnetic interference level in particular

(conducted, coupled L, C and radiated interference) is one of the significant factors  leading to a direct change in

the damage intensity λ. This operating parameter λ directly impacts the reliability of VMS elements, modules and devices,

as well as VMS functioning. Therefore, the researchers of  discussed electromagnetic interference from the entire

frequency band generated within an extensive railway area, specifying their levels, amplitudes and spectra ;

however, they failed to analyse their impact on the reliability of individual system elements (e.g., camera, recorded, switch,

etc.) or the entire VMS.

Variable, pulsed, and non-linear power supply line loads of high inrush currents can present within an overhead railway

line and lead to current harmonics appearing in power supply lines . They can cause VMS and ESS functioning

interference and be the reason for additional losses in transformer cores and traction vehicle startup motors. The pulsed

loads occurring within the power supply and overhead contact networks also cause changed rated voltages . This

may lead to unacceptable changes in the guaranteed voltage level (U = 12 V) for individual VMS elements . The

presence of harmonics in a power supply and overhead contact network  also means additional losses in the cables

themselves, especially the ones supplying individual VMS and ESS elements (e.g., cameras), which are distributed

throughout an extensive railway area (e.g., failure to satisfy the condition of permissible supply line voltage dip) .

The presented source literature on the phenomena in power supply lines does not reference a change in damage intensity

λ. The studies conducted by the researchers enable assessing the impact of the aforementioned interference on VMS

reliability.

A variable, pulsed load in an overhead contact line and power lines supplying an extensive railway area cause

electromagnetic interference of large amplitudes from within the entire frequency band . The occurring

electromagnetic interference that causes conducted interference (e.g., common grounding impedance), inductance

coupling or parasitic capacitances for VMS elements or devices through signal lines or cables providing the supply voltage

. Conducted interference from a higher frequency band (above 30 MHz) propagates into the surrounding space

within a railway area through the generally available environment . Individual VMS elements and devices with

external conduits or metal housings with openings and wide bandwidth antennas are treated by these interfering signals

as parasitic signal receivers . In their researches, the researchers did not analyse the impact of interference on the

reliability of electronic components. In the case of non-linear elements that comprise VMS, these signals may interfere

with or change the processing characteristics or cause the presence of intermodulation phenomena . In the course

of studying the characteristics of radiated interference generated within a railway area, a method was proposed that would

enable the determination of a change in the intensity index λ for VMS elements or equipment operated within such a

railway area.

An important issue related to security systems, including VMS, is also the process of diagnosing their technical condition

. Generally available articles and studies present general assumptions of measurement systems that implement

this important operational process under the following static and dynamic conditions, employing various diagnostic

techniques and technical solutions . However, these studies do not take into account the impact of natural or

artificial electromagnetic interference present within a railway area. They result from, e.g., long signal loops of cameras,

control lines for PTZ cameras and devices transmitting an alert or damage state . The researchers of the said

papers mitigated these errors contributed by interfering signals . Testing the electromagnetic interference present in

a railway environment, as well as the observation and measurement of output signals in alarm control units where the

decision-making process takes place—i.e., conditioning and working out output waveforms—enables determining the

impact of the aforementioned factors, e.g., on the output signal informing about the monitoring, alerting or damage state,

or other forced operation process .

An important issue associated with the VMS operation processes is the transmission of video, alerting, monitoring, or

damage signals to ARC . The researchers of published articles took only the basic problems into account. This

included reliability, availability, quality or, e.g., transmission time to ARC . In contrast, the researchers of the

developed article also conducted an analysis of notification and ARC service response to a damage signal . The

calculations conducted as part of this article included this parameter, e.g., in VMS recovery intensity µ . It is an
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issue that is particularly important for restoring a VMS to an original (initial) state—i.e., the state of fitness of an entire

system .
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