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An anomaly in autonomous robotic missions (ARM) is a deviation from the expected behaviour, performance, or

state of the robotic system and its environment, which may impact the mission’s objectives, safety, or efficiency;

and this anomaly can be caused either by system faults or the change in the environmental dynamics of

interaction. The nuanced understanding of anomaly categories facilitates a more strategic approach, ensuring that

detection methods are more effective in addressing the specific nature of the anomaly.

anomaly  autonomous robots  autonomous missions

1. Introduction

Autonomous robotic missions (ARMs) have become increasingly important in various fields, including

manufacturing , logistics , search and rescue operations , and even space exploration . As the complexity of

these missions grows, ensuring the reliability and safety of the robots becomes paramount . One critical aspect of

ensuring the safety and reliability of ARMs is the timely and accurate detection of anomalies , which can arise

from various sources such as hardware faults , software faults , environmental change , or unexpected

interactions with other systems .

2. What Are Anomalies and How Do They Differ from Faults?

The relationship between anomalies and faults is quite complex, with different researchers having varying opinions

. However, Figure 1 clarifies the fault and anomaly concepts and their relationship in the context of ARMs.

When the ARM is repeated N times, the green left section of the bar represents the number of times where the

hypothetical autonomous robot completes the mission with the expected behaviours. The blue bar section towards

the right, represents the number of times in the mission where unexpected behaviour in execution were observed.

To differentiate these unexpected behaviours, and their inter-relations, researchers visualise it with a Venn

diagram. As observed in the Venn diagram, not all anomalies are as harmful as most people perceive . If an

observed anomaly was diagnosed to be harmful or disruptive to the mission continuity, it could be either due to a

system anomaly or an environmental anomaly. System anomalies can be caused by faults, which can be classified

as either known or unknown faults. Known faults represent the system errors, the cause of which are known and

mostly have a known solution while unknown or unanticipated faults are system errors that were not experienced

nor solved yet .
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Figure 1. The relationship of anomalies and faults in the context of autonomous robotic missions.

Khalastchi and Kalech’s  article suggests the commonly used term “unknown fault” in fault detection is indicative

that there is no clear term to define the unknown faults. Such unknown faults are usually interpreted as “anomaly”

in the context of ARMs. However, Graabæk et al.  suggests that anomalies can be symptoms of faults, implying

that both known and unknown faults can be a cause of an anomaly. Moreover, researchers propose that the term

anomaly has a meaning beyond the undesired system behaviour caused by faults and that also encapsulates the

environmental impacts independent of the system and hence cannot be named as faults. Furthermore, as indicated

in Figure 1, anomalies in the autonomous missions can also result from the aleatoric uncertainty of the AI models

used for the perception and control tasks , which become predominant in interactions with specific and usually

unforeseen environmental conditions to manifest unexpected behaviour, hence an anomaly.

The two coloured bars in Figure 1 highlight that the probability of the robot executing the same behaviours

depends on its environment. Usually, the training of AI systems happens in a specific controlled environment. Thus,

the missions will be highly repeatable in those environments; however, in new environments, there is a higher

possibility that the robot will perform unexpected or wrong executions due to the probabilistic nature of certain AI

models such as deep reinforcement learning and Bayesian Models . Moreover, the irreducible error or

aleatoric uncertainty , intrinsic to any AI model, is one of the reasons for anomalies in autonomous robots and is

exacerbated when the robot is in a new environment .

The consequences of these anomalies are not always harmful to a mission, as illustrated in Figure 1. An anomaly

can sometimes be inconsequential to the mission continuity. For example, a robot that uses deep reinforcement

learning for motion planning can move from a start position to an end goal via different trajectories. In the presence

of an environmental anomaly, and due to its interaction with the probabilistic nature of AI models, it may randomly

plan a totally new path which was not experienced before; yet, the new trajectory may result in achieving the goal

more or less in the same duration, hence overall it might not result in any failure or underperformance. Such

deviations are considered a harmless or inconsequential anomaly.
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In summary, there are different types of anomalies and different reasons for them in autonomous missions. How do

we know what an anomalous behaviour is? Are there any fundamental features that define anomalous behaviours

in ARMs? This is explored in the next section in reference to the reviewed literature.

3. Classification of Anomalies in ARMs

Anomalies in ARMs can manifest in various forms, with different levels of complexity and implications for the

mission’s success and safety. To better understand and address these anomalies, it is essential to classify them

according to their fundamental characteristics. In analysing the strategy, methods, and models within the reviewed

articles, three distinct frameworks for anomalies in ARMs were identified: spatial, temporal, and spatiotemporal, as

shown in Figure 2.

Figure 2. Spatial, temporal, and their correlations. For example, an image of a car with its background is purely

spatial, and similarly, the time-series data showing variation in the car’s horsepower are purely temporal. However,

researchers demonstrate the spatiotemporal correlation when the images are stacked to create a sequence of

motions or when horsepower data links with the appropriate image in the sequence.

The spatial, temporal, and spatiotemporal classification refers primarily to the nature of the observation that defines

the anomaly and its classification and, hence, the data used for its detection. For example, spatial anomalies may

include hardware faults affecting the physical structure of a robot or environmental obstacles that hinder a robot’s

movement. Temporal anomalies, on the other hand, may include unexpected changes in a robot’s speed,

acceleration, or energy consumed over time. Spatiotemporal anomalies, which involve both spatial and temporal
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aspects, can be more complex and challenging to detect, as they may involve interactions between multiple robots

or between a robot and its environment over time.

The distinction between these types of anomalies has implications for the methods used to detect them and the

challenges faced in ARMs. For instance, spatial anomalies may be more effectively detected using image-based or

distance-based algorithms, while temporal anomalies may require time-series analysis or signal-processing

techniques. Spatiotemporal anomalies, due to their complexity, may require more advanced methods, such as

machine learning algorithms that can capture the intricate relationships between spatial and temporal features.

Table 1 presents a summary of the key characteristics of each category of anomalies, along with representative

examples of anomalies from the literature. It lists articles selected based on their relevance to the specific anomaly

types, their methodological rigour, and their contributions to the understanding and detection of anomalies in

ARMs.

Table 1. Features of anomalies observed in ARMs.

Title Year “Anomaly” Determinants Data Used to Capture
“Anomalies”

Anomaly
Class

Compressive change
retrieval for moving object

detection 
2016

The difference in the given
image and the previous

similar images retrieved from
a search.

GPS data, two cameras,
and LiDAR data

Spatial

Anomaly detection and
cognisant path planning

for surveillance operations
using aerial robots 

2019 Car, blanket
Camera of a DJI Matrice

100
Spatial

Safe robot navigation 2020
Variation in environmental
conditions (Sunlight, Fire,

Rain, Wet)

RGB-D, Gravity Aligned
Depth. Gravity Aligned

Surface Normals. Gravity
Aligned Surface Normals.

Spatial

An anomaly detection
system via moving

surveillance robots with
human collaboration 

2021

Variation of the position of
objects in the reference

images to that of the
observed image.

RGB data from a camera
attached to the robot

Spatial

An anomaly detection
approach to monitor the

structure-based navigation
in agricultural robotics 

2021

Low light, shadows, leaf-
covering sensors, and

unrealistic basic assumptions
in the tracking algorithms

16-channel 3D LiDAR
sensor

Spatial

Curiosity MSL 2018
Variation in the individual

telemetry data.

Telemetry data for a
specific time frame (5

days) nearby an anomaly
Temporal
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4. Methods of Anomaly Detection in ARMs

This section provides an overview of the methods and techniques employed for anomaly detection in ARMs,

considering the diverse types of anomalies outlined in the previous section. The discussion on anomaly detection is

centred around model-based techniques and data-driven methods, emphasising the latter due to its increased

adoption and scalability.

4.1. Model-Based Techniques

To detect anomalies, model-based techniques rely on a priori knowledge of the system’s underlying kinematics,

dynamics, or other physical properties. These methods can be useful when the system’s behaviour can be

Title Year “Anomaly” Determinants Data Used to Capture
“Anomalies”

Anomaly
Class

Robot health estimation
through unsupervised

anomaly detection using
gaussian mixture models

2020

Robot immobilised or
unstable due to external
influences such as extra

payload

Current from the motor Temporal

Anomaly detection in
industrial robots 2021

Overload, parts breaking,
environmental effects,
maloperation, program

exceptions, transmission
errors

Power factor. Loop
current. Reactive power.
Active power. Current,

Voltage. Incoming
frequency.

Temporal

Anomaly detection in
cobots 2021

Increase in temperature due
to load and speed of the

cobot during human-robot
interaction.

Joint values, Speed,
Current, Voltage Power

Temporal

Robot-assisted feeding 2017

Touch by a user, aggressive
eating, utensil collision by a

user, sound from a user, face
occlusion, utensil miss by a

user

RGB-D, Joint torque,
Sound energy

Spatio-
Temporal

Human-care rounds robot
with contactless breathing

measurement 
2019

A breathing Human on the
floor

RGB-D and Thermal
Point Cloud (TPC)

Spatio-
temporal

Anomaly detection using
IoT sensor-assisted

ConvLSTM models for
connected vehicles 

2021

Unusual Variations in
autonomous vehicle

navigation and powertrain
data

Temperature sensors,
pressure sensors,

location and orientation
sensors

Spatio-
temporal

Traffic accident detection
via self-supervised

consistency learning in
driving scenarios 

2022
Inconsistent movements of
humans and other vehicles

RGB
Spatio-

temporal

Proactive anomaly
detection for robot

navigation with multi-
sensor fusion 

2022
Weeds and low-hanging
leaves block the sensory

signals.

RGB, Lidar point cloud,
and the planned path.

Spatio-
temporal
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accurately modelled using theoretical principles and the amount of available data is limited.

4.1.1. Kinematic and Dynamic Modeling

Anomalies in the kinematic or dynamic behaviour of a robot can be detected by comparing the observed motion

with the expected motion based on the system’s kinematic or dynamic models . Deviations from the expected

behaviour can indicate the presence of an anomaly .

4.1.2. Model Predictive Control

Model Predictive Control (MPC) is a control strategy that uses a system model to predict future behaviour and

determine the optimal control inputs. Anomalies can be identified and addressed in real-time by comparing the

predicted behaviour with the actual system response . However, this method needs an accurate system model,

which is hard to formulate, especially when considering ARMs. Methods such as learning local linear models online

have been introduced to reduce these limitations of MPC .

4.1.3. Observer-Based Methods

Observer-based methods, such as Kalman or particle filters, have been employed to estimate a system’s internal

state based on the available measurements and a system model. By comparing the estimated state with the actual

state, anomalies can be detected and mitigated . Similarly, hidden Markov models (HMMs) are widely used in

the anomaly detection of autonomous robotic missions. Here, HMMs are used to model the normal state of the

robot or different phases of the task. Once the HMM is trained, it can be used to analyze new sequences of sensor

data. A low likelihood score indicates that the observed sequence is unlikely under normal operating conditions and

is considered an anomaly . Further, employing sliding mode observers for meticulous fault identification within

robotic 271 vision systems underscores the indispensable utility of precise, model-informed diagnostics 272 in

safeguarding autonomous robotic missions’ fidelity and operational efficacy .

The above methods heavily rely on the accurate model of either the system process or system behaviour, which is

usually not available and tedious to develop due to the complexity of the system. For example, with a walking

autonomous robot equipped with cameras, these approaches would require an extensive model of the behaviour of

all the actuators of the robot in almost all possible states and all relevant visual information on the environmental

conditions. Therefore, these methods have the limitation of not being scalable to be applied on more complex

systems and to detect more complex phenomena .

Emerging hybrid techniques in ARMs, such as Adaptive Neural Tracking Control  and Generative-Model-Based

Autonomous Intelligent Unmanned Systems , exemplify the cutting-edge integration of model-based frameworks

with adaptive, data-driven technologies. While the former leverages neural networks for enhancing anomaly

detection and system performance, the latter employs generative models to boost system adaptability and

intelligence in dynamic environments. These approaches underscore the hybrid paradigm’s capability to transcend

traditional boundaries, offering sophisticated solutions for complex challenges in autonomous system development.
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4.2. Data-Driven Techniques

Data-driven techniques have been extensively used for anomaly detection in ARMs due to their minimal reliance on

prior system knowledge and adaptability to data variations. In this discussion, the data-driven anomaly detection

techniques are categorised according to their focus on spatial, temporal and spatiotemporal features. The review

has indicated an increased utilisation of data-driven methods to detect anomalies in the recent decade. Figure 3

provides examples of various algorithms presently applied to detect spatial, temporal, and spatiotemporal

anomalies in autonomous missions and with the year of the initial use of these algorithms.

The breakthrough in spatial anomaly detection happened with the progress and adoption of convolutional neural

networks (CNNs)  and variations of the same for object recognition in the images. Spatial anomaly detection

research mainly focuses on comparing the normal image with the new image and detecting any new pattern or

object in the image compared to the previous one. Various algorithms, such as deep convolutional neural networks

(DCNNs) , a convolutional neural network with multiple hidden layers, LibSVM, a library for support vector

machine algorithms, and autoencoders which encode the data or, in this case, image into a latent space and detect

variations in new images using the reconstruction error, is used for spatial anomaly detection. More recently,

SiamNet  and Deep Support Vector Data Description (SVDD)  have been implemented where SiamNet

contains two symmetric convolutional neural networks which enable the comparison of different images with

minimal training data, and the Deep SVDD optimises the training data or image into a hypersphere and considers

out of boundary data from this distribution as anomalies.

Figure 3. Methods to find anomalies in spatial, temporal and Spatio-temporal elements. Where S.1 , S.2 , S.3

, S.4 , S.5 , S.6  represent spatial anomaly detection methods, ST.1 , ST.2 , ST.3 , ST.4 ,

ST.5 , ST.6  represent Spatio-temporal anomaly detection methods and T.1 , T.2 , T.3 , T.4 

represent Temporal anomaly detection methods. The colour variation represents the year when the method was

first used in Robotics for anomaly detection.

The main challenge in temporal anomaly detection is developing models or systems that can remember past

experiences or quantify patterns from long and complex time-series data. The temporal anomaly detection problem
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is not equivalent to sensor noise prediction problems. The noise, or any sudden amplitude or frequency change in

the signal, can be easily captured or filtered out using already established digital signal processing methods such

as Fast Fourier Transform (FFT)  and Radon Fourier Transform (RFT) , or cancelled out via the feedback

controllers inside the autonomous robots. The main breakthrough leading to temporal anomaly detection through

solving and capturing patterns in highly complex time series data in robotic systems emerged with the development

of recurrent neural networks (RNNs) . RNNs are neural networks capable of remembering past experiences or

storing helpful information from past data, and LSTM  is a type of RNN widely used in time series forecasting.

Moreover, the Gaussian mixture model (GMM)  is used for health monitoring and detecting anomalies from the

sensors in the robots, wherein the healthy robot data is used for training the model that is then able to detect any

anomalies in the time series data without any previous knowledge of the anomalies. Light Gradient Boosting

Machine or LightGBM, a fast and high-performing gradient boosting algorithm, has recently been used for time

series data analysis . It is similar to the multiple linear regression (MLR) method used in time series forecasting

in robotics systems .

Spatio-temporal anomaly detection targets anomalies with spatial and temporal correlations and hence is more

challenging due to the complexity of finding the spatial correlations, temporal correlations and the correlations

between both. Recent advancements in spatio-temporal anomaly detection have stemmed from the integration of

convolutional networks in the RNNs to create Convolutional LSTMs (Conv-LSTM)  and Integrating Variational

Autoencoders with LSTMs. Both these frameworks were able to capture the spatial variations, temporal variations,

and correlations. For example, capturing anomalies by collecting various sensor data such as from the Global

Navigation Satellite System (spatial), the location, position, and orientation of an autonomous car in a specific time

interval (temporal) is a representative of spatio-temporal anomaly detection . In Figure 3, ST.2 mentions using

FFT in anomaly detection. Here, spatial anomaly (human in a specific location) is captured via a Random Sampling

consensus algorithm, and further, FFT is specifically used to detect the variation in the chest movement of the

detected human. Thus, the overall system can detect spatiotemporal anomalies. J. W. Kaeli et al. focuses on a

data-driven approach that uniquely combines spatial and temporal anomaly detection aspects through semantic

mapping in the context of autonomous underwater vehicles . Given its emphasis on real-time processing of

diverse data types, such as optical and acoustical imagery for dynamic environmental interpretation and anomaly

identification, it naturally extends into spatiotemporal anomaly detection.

In summary, this section has provided an overview of the model-based and data-driven techniques employed for

anomaly detection in ARMs. It has specifically focused on the data driven detection methods targeting spatial,

temporal, and spatio-temporal anomaly detection, which are mainly based on application of deep neural networks.
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