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An anomaly in autonomous robotic missions (ARM) is a deviation from the expected behaviour, performance, or state of

the robotic system and its environment, which may impact the mission’s objectives, safety, or efficiency; and this anomaly

can be caused either by system faults or the change in the environmental dynamics of interaction. The nuanced

understanding of anomaly categories facilitates a more strategic approach, ensuring that detection methods are more

effective in addressing the specific nature of the anomaly.
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1. Introduction

Autonomous robotic missions (ARMs) have become increasingly important in various fields, including manufacturing ,

logistics , search and rescue operations , and even space exploration . As the complexity of these missions grows,

ensuring the reliability and safety of the robots becomes paramount . One critical aspect of ensuring the safety and

reliability of ARMs is the timely and accurate detection of anomalies , which can arise from various sources such as

hardware faults , software faults , environmental change , or unexpected interactions with other systems .

2. What Are Anomalies and How Do They Differ from Faults?

The relationship between anomalies and faults is quite complex, with different researchers having varying opinions .

However, Figure 1 clarifies the fault and anomaly concepts and their relationship in the context of ARMs. When the ARM

is repeated N times, the green left section of the bar represents the number of times where the hypothetical autonomous

robot completes the mission with the expected behaviours. The blue bar section towards the right, represents the number

of times in the mission where unexpected behaviour in execution were observed. To differentiate these unexpected

behaviours, and their inter-relations, researchers visualise it with a Venn diagram. As observed in the Venn diagram, not

all anomalies are as harmful as most people perceive . If an observed anomaly was diagnosed to be harmful or

disruptive to the mission continuity, it could be either due to a system anomaly or an environmental anomaly. System

anomalies can be caused by faults, which can be classified as either known or unknown faults. Known faults represent the

system errors, the cause of which are known and mostly have a known solution while unknown or unanticipated faults are

system errors that were not experienced nor solved yet .

Figure 1. The relationship of anomalies and faults in the context of autonomous robotic missions.

Khalastchi and Kalech’s  article suggests the commonly used term “unknown fault” in fault detection is indicative that

there is no clear term to define the unknown faults. Such unknown faults are usually interpreted as “anomaly” in the

context of ARMs. However, Graabæk et al.  suggests that anomalies can be symptoms of faults, implying that both

known and unknown faults can be a cause of an anomaly. Moreover, researchers propose that the term anomaly has a

meaning beyond the undesired system behaviour caused by faults and that also encapsulates the environmental impacts
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independent of the system and hence cannot be named as faults. Furthermore, as indicated in Figure 1, anomalies in the

autonomous missions can also result from the aleatoric uncertainty of the AI models used for the perception and control

tasks , which become predominant in interactions with specific and usually unforeseen environmental conditions to

manifest unexpected behaviour, hence an anomaly.

The two coloured bars in Figure 1 highlight that the probability of the robot executing the same behaviours depends on its

environment. Usually, the training of AI systems happens in a specific controlled environment. Thus, the missions will be

highly repeatable in those environments; however, in new environments, there is a higher possibility that the robot will

perform unexpected or wrong executions due to the probabilistic nature of certain AI models such as deep reinforcement

learning and Bayesian Models . Moreover, the irreducible error or aleatoric uncertainty , intrinsic to any AI

model, is one of the reasons for anomalies in autonomous robots and is exacerbated when the robot is in a new

environment .

The consequences of these anomalies are not always harmful to a mission, as illustrated in Figure 1. An anomaly can

sometimes be inconsequential to the mission continuity. For example, a robot that uses deep reinforcement learning for

motion planning can move from a start position to an end goal via different trajectories. In the presence of an

environmental anomaly, and due to its interaction with the probabilistic nature of AI models, it may randomly plan a totally

new path which was not experienced before; yet, the new trajectory may result in achieving the goal more or less in the

same duration, hence overall it might not result in any failure or underperformance. Such deviations are considered a

harmless or inconsequential anomaly.

In summary, there are different types of anomalies and different reasons for them in autonomous missions. How do we

know what an anomalous behaviour is? Are there any fundamental features that define anomalous behaviours in ARMs?

This is explored in the next section in reference to the reviewed literature.

3. Classification of Anomalies in ARMs

Anomalies in ARMs can manifest in various forms, with different levels of complexity and implications for the mission’s

success and safety. To better understand and address these anomalies, it is essential to classify them according to their

fundamental characteristics. In analysing the strategy, methods, and models within the reviewed articles, three distinct

frameworks for anomalies in ARMs were identified: spatial, temporal, and spatiotemporal, as shown in Figure 2.

Figure 2. Spatial, temporal, and their correlations. For example, an image of a car with its background is purely spatial,

and similarly, the time-series data showing variation in the car’s horsepower are purely temporal. However, researchers

demonstrate the spatiotemporal correlation when the images are stacked to create a sequence of motions or when

horsepower data links with the appropriate image in the sequence.

The spatial, temporal, and spatiotemporal classification refers primarily to the nature of the observation that defines the

anomaly and its classification and, hence, the data used for its detection. For example, spatial anomalies may include

hardware faults affecting the physical structure of a robot or environmental obstacles that hinder a robot’s movement.

Temporal anomalies, on the other hand, may include unexpected changes in a robot’s speed, acceleration, or energy
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consumed over time. Spatiotemporal anomalies, which involve both spatial and temporal aspects, can be more complex

and challenging to detect, as they may involve interactions between multiple robots or between a robot and its

environment over time.

The distinction between these types of anomalies has implications for the methods used to detect them and the

challenges faced in ARMs. For instance, spatial anomalies may be more effectively detected using image-based or

distance-based algorithms, while temporal anomalies may require time-series analysis or signal-processing techniques.

Spatiotemporal anomalies, due to their complexity, may require more advanced methods, such as machine learning

algorithms that can capture the intricate relationships between spatial and temporal features.

Table 1 presents a summary of the key characteristics of each category of anomalies, along with representative examples

of anomalies from the literature. It lists articles selected based on their relevance to the specific anomaly types, their

methodological rigour, and their contributions to the understanding and detection of anomalies in ARMs.

Table 1. Features of anomalies observed in ARMs.

Title Year “Anomaly” Determinants Data Used to Capture
“Anomalies”

Anomaly
Class

Compressive change retrieval
for moving object detection 2016

The difference in the given image
and the previous similar images

retrieved from a search.

GPS data, two cameras, and
LiDAR data Spatial

Anomaly detection and
cognisant path planning for

surveillance operations using
aerial robots 

2019 Car, blanket Camera of a DJI Matrice 100 Spatial

Safe robot navigation 2020
Variation in environmental

conditions (Sunlight, Fire, Rain,
Wet)

RGB-D, Gravity Aligned
Depth. Gravity Aligned

Surface Normals. Gravity
Aligned Surface Normals.

Spatial

An anomaly detection system
via moving surveillance robots
with human collaboration 

2021
Variation of the position of objects
in the reference images to that of

the observed image.

RGB data from a camera
attached to the robot Spatial

An anomaly detection approach
to monitor the structure-based

navigation in agricultural
robotics 

2021

Low light, shadows, leaf-covering
sensors, and unrealistic basic
assumptions in the tracking

algorithms

16-channel 3D LiDAR sensor Spatial

Curiosity MSL 2018 Variation in the individual telemetry
data.

Telemetry data for a specific
time frame (5 days) nearby an

anomaly
Temporal

Robot health estimation
through unsupervised anomaly

detection using gaussian
mixture models 

2020
Robot immobilised or unstable due
to external influences such as extra

payload
Current from the motor Temporal

Anomaly detection in industrial
robots 2021

Overload, parts breaking,
environmental effects,

maloperation, program exceptions,
transmission errors

Power factor. Loop current.
Reactive power. Active power.

Current, Voltage. Incoming
frequency.

Temporal

Anomaly detection in cobots 2021
Increase in temperature due to load

and speed of the cobot during
human-robot interaction.

Joint values, Speed, Current,
Voltage Power Temporal

Robot-assisted feeding 2017

Touch by a user, aggressive eating,
utensil collision by a user, sound

from a user, face occlusion, utensil
miss by a user

RGB-D, Joint torque, Sound
energy

Spatio-
Temporal

Human-care rounds robot with
contactless breathing

measurement 
2019 A breathing Human on the floor RGB-D and Thermal Point

Cloud (TPC)
Spatio-

temporal

Anomaly detection using IoT
sensor-assisted ConvLSTM

models for connected vehicles 2021
Unusual Variations in autonomous
vehicle navigation and powertrain

data

Temperature sensors,
pressure sensors, location

and orientation sensors

Spatio-
temporal
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Title Year “Anomaly” Determinants Data Used to Capture
“Anomalies”

Anomaly
Class

Traffic accident detection via
self-supervised consistency
learning in driving scenarios 2022 Inconsistent movements of humans

and other vehicles RGB Spatio-
temporal

Proactive anomaly detection for
robot navigation with multi-

sensor fusion 
2022 Weeds and low-hanging leaves

block the sensory signals.
RGB, Lidar point cloud, and

the planned path.
Spatio-

temporal

4. Methods of Anomaly Detection in ARMs

This section provides an overview of the methods and techniques employed for anomaly detection in ARMs, considering

the diverse types of anomalies outlined in the previous section. The discussion on anomaly detection is centred around

model-based techniques and data-driven methods, emphasising the latter due to its increased adoption and scalability.

4.1. Model-Based Techniques

To detect anomalies, model-based techniques rely on a priori knowledge of the system’s underlying kinematics, dynamics,

or other physical properties. These methods can be useful when the system’s behaviour can be accurately modelled using

theoretical principles and the amount of available data is limited.

4.1.1. Kinematic and Dynamic Modeling

Anomalies in the kinematic or dynamic behaviour of a robot can be detected by comparing the observed motion with the

expected motion based on the system’s kinematic or dynamic models . Deviations from the expected behaviour can

indicate the presence of an anomaly .

4.1.2. Model Predictive Control

Model Predictive Control (MPC) is a control strategy that uses a system model to predict future behaviour and determine

the optimal control inputs. Anomalies can be identified and addressed in real-time by comparing the predicted behaviour

with the actual system response . However, this method needs an accurate system model, which is hard to formulate,

especially when considering ARMs. Methods such as learning local linear models online have been introduced to reduce

these limitations of MPC .

4.1.3. Observer-Based Methods

Observer-based methods, such as Kalman or particle filters, have been employed to estimate a system’s internal state

based on the available measurements and a system model. By comparing the estimated state with the actual state,

anomalies can be detected and mitigated . Similarly, hidden Markov models (HMMs) are widely used in the anomaly

detection of autonomous robotic missions. Here, HMMs are used to model the normal state of the robot or different

phases of the task. Once the HMM is trained, it can be used to analyze new sequences of sensor data. A low likelihood

score indicates that the observed sequence is unlikely under normal operating conditions and is considered an anomaly

. Further, employing sliding mode observers for meticulous fault identification within robotic 271 vision systems

underscores the indispensable utility of precise, model-informed diagnostics 272 in safeguarding autonomous robotic

missions’ fidelity and operational efficacy .

The above methods heavily rely on the accurate model of either the system process or system behaviour, which is usually

not available and tedious to develop due to the complexity of the system. For example, with a walking autonomous robot

equipped with cameras, these approaches would require an extensive model of the behaviour of all the actuators of the

robot in almost all possible states and all relevant visual information on the environmental conditions. Therefore, these

methods have the limitation of not being scalable to be applied on more complex systems and to detect more complex

phenomena .

Emerging hybrid techniques in ARMs, such as Adaptive Neural Tracking Control  and Generative-Model-Based

Autonomous Intelligent Unmanned Systems , exemplify the cutting-edge integration of model-based frameworks with

adaptive, data-driven technologies. While the former leverages neural networks for enhancing anomaly detection and

system performance, the latter employs generative models to boost system adaptability and intelligence in dynamic

environments. These approaches underscore the hybrid paradigm’s capability to transcend traditional boundaries, offering

sophisticated solutions for complex challenges in autonomous system development.
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4.2. Data-Driven Techniques

Data-driven techniques have been extensively used for anomaly detection in ARMs due to their minimal reliance on prior

system knowledge and adaptability to data variations. In this discussion, the data-driven anomaly detection techniques

are categorised according to their focus on spatial, temporal and spatiotemporal features. The review has indicated an

increased utilisation of data-driven methods to detect anomalies in the recent decade. Figure 3 provides examples of

various algorithms presently applied to detect spatial, temporal, and spatiotemporal anomalies in autonomous missions

and with the year of the initial use of these algorithms.

The breakthrough in spatial anomaly detection happened with the progress and adoption of convolutional neural networks

(CNNs)  and variations of the same for object recognition in the images. Spatial anomaly detection research mainly

focuses on comparing the normal image with the new image and detecting any new pattern or object in the image

compared to the previous one. Various algorithms, such as deep convolutional neural networks (DCNNs) , a

convolutional neural network with multiple hidden layers, LibSVM, a library for support vector machine algorithms, and

autoencoders which encode the data or, in this case, image into a latent space and detect variations in new images using

the reconstruction error, is used for spatial anomaly detection. More recently, SiamNet  and Deep Support Vector Data

Description (SVDD)  have been implemented where SiamNet contains two symmetric convolutional neural networks

which enable the comparison of different images with minimal training data, and the Deep SVDD optimises the training

data or image into a hypersphere and considers out of boundary data from this distribution as anomalies.

Figure 3. Methods to find anomalies in spatial, temporal and Spatio-temporal elements. Where S.1 , S.2 , S.3 ,

S.4 , S.5 , S.6  represent spatial anomaly detection methods, ST.1 , ST.2 , ST.3 , ST.4 , ST.5 , ST.6

 represent Spatio-temporal anomaly detection methods and T.1 , T.2 , T.3 , T.4  represent Temporal anomaly

detection methods. The colour variation represents the year when the method was first used in Robotics for anomaly

detection.

The main challenge in temporal anomaly detection is developing models or systems that can remember past experiences

or quantify patterns from long and complex time-series data. The temporal anomaly detection problem is not equivalent to

sensor noise prediction problems. The noise, or any sudden amplitude or frequency change in the signal, can be easily

captured or filtered out using already established digital signal processing methods such as Fast Fourier Transform (FFT)

 and Radon Fourier Transform (RFT) , or cancelled out via the feedback controllers inside the autonomous robots.

The main breakthrough leading to temporal anomaly detection through solving and capturing patterns in highly complex

time series data in robotic systems emerged with the development of recurrent neural networks (RNNs) . RNNs are

neural networks capable of remembering past experiences or storing helpful information from past data, and LSTM  is

a type of RNN widely used in time series forecasting.

Moreover, the Gaussian mixture model (GMM)  is used for health monitoring and detecting anomalies from the sensors

in the robots, wherein the healthy robot data is used for training the model that is then able to detect any anomalies in the

time series data without any previous knowledge of the anomalies. Light Gradient Boosting Machine or LightGBM, a fast

and high-performing gradient boosting algorithm, has recently been used for time series data analysis . It is similar to

the multiple linear regression (MLR) method used in time series forecasting in robotics systems .

Spatio-temporal anomaly detection targets anomalies with spatial and temporal correlations and hence is more

challenging due to the complexity of finding the spatial correlations, temporal correlations and the correlations between

both. Recent advancements in spatio-temporal anomaly detection have stemmed from the integration of convolutional

networks in the RNNs to create Convolutional LSTMs (Conv-LSTM)  and Integrating Variational Autoencoders with

LSTMs. Both these frameworks were able to capture the spatial variations, temporal variations, and correlations. For

example, capturing anomalies by collecting various sensor data such as from the Global Navigation Satellite System
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(spatial), the location, position, and orientation of an autonomous car in a specific time interval (temporal) is a

representative of spatio-temporal anomaly detection . In Figure 3, ST.2 mentions using FFT in anomaly detection.

Here, spatial anomaly (human in a specific location) is captured via a Random Sampling consensus algorithm, and

further, FFT is specifically used to detect the variation in the chest movement of the detected human. Thus, the overall

system can detect spatiotemporal anomalies. J. W. Kaeli et al. focuses on a data-driven approach that uniquely combines

spatial and temporal anomaly detection aspects through semantic mapping in the context of autonomous underwater

vehicles . Given its emphasis on real-time processing of diverse data types, such as optical and acoustical imagery for

dynamic environmental interpretation and anomaly identification, it naturally extends into spatiotemporal anomaly

detection.

In summary, this section has provided an overview of the model-based and data-driven techniques employed for anomaly

detection in ARMs. It has specifically focused on the data driven detection methods targeting spatial, temporal, and spatio-

temporal anomaly detection, which are mainly based on application of deep neural networks.
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