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Pavement crack detection is of significant importance in ensuring road safety and smooth traffic flow. However, pavement

cracks come in various shapes and forms which exhibit spatial continuity, and algorithms need to adapt to different types

of cracks while preserving their continuity. Some studies have already applied the feature learning capability of generative

models to crack detection. 
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1. Introduction

Pavement crack detection plays a crucial role in the maintenance and management of road infrastructure worldwide.

Cracks on road surfaces are common indicators of pavement distress, often resulting from various factors such as traffic

load, environmental conditions, and material deterioration. These cracks, if left unattended, can lead to a multitude of

issues, including compromised road safety, increased risk of accidents, and hindered traffic flow. Traditional methods of

crack detection primarily rely on manual visual inspection, where engineers or inspectors visually examine the surfaces of

structures or materials to identify cracks and defects. This approach relies on human expertise, demanding significant

time and labor efforts.

In recent years, numerous research efforts have been dedicated to developing automated pavement crack detection

algorithms and systems, utilizing various imaging modalities such as visible light photography , infrared thermography

, and LiDAR scanning . These technologies offer the potential for faster, more accurate, and cost-effective crack

detection compared to manual inspection methods. Methods utilizing visible light images for pavement crack detection

offer the advantages of cost-effectiveness, enhanced detection speed, and automation. Image-based crack detection

methods mainly include threshold segmentation , edge detection , traditional machine learning , and deep

learning techniques . Deep learning models, particularly convolutional neural networks (CNNs) ,

have exhibited significant promise in the field of crack detection because they can automatically learn image features,

leading to highly accurate crack detection. Influenced by materials and environment, pavement cracks exhibit various

shapes and features, but they typically present spatial continuity. However, limited by the receptive field of the kernel of

CNNs, deep learning methods based on CNNs often produce fragmented and discontinuous detection results. There are

mainly two reasons for producing such results: 1. Cracks exhibit continuity in space, while CNN-based methods are

unable to learn this underlying spatial relationship between pixels. 2. Cracks exhibit significant scale differences between

length and width dimensions. Moreover, annotating ground truth for cracks can be challenging as it is difficult for humans

to accurately delineate crack contours, which results in a decline in CNN performance.

In recent years, generative models have garnered substantial popularity in the domain of deep learning. Deep generative

models are essentially designed to seek and express the probability distribution of (multivariate) data in some way. These

models, by capturing the data generation process, possess a certain level of robustness and probabilistic inference

capability. They can handle missing and unlabeled data, learn high-level feature representations, and, as a result, find

wide application in tasks such as visual object recognition, information retrieval, classification, and regression. Particularly,

diffusion models  have emerged as a cutting-edge generative model, surpassing traditional models like Generative

Adversarial Networks (GANs)  and Variational Autoencoders (VAEs)  in image generation tasks. Diffusion models

learn through the processes of adding noise and sampling, and they possess two major advantages in feature

representation. Firstly, diffusion models can predict pixel-level noise at each diffusion step, thereby characterizing the joint

probability distribution of all pixels. This implies that they can learn broader spatial relationships, capturing more details

and structural information during the image generation process. Secondly, the sampling process of diffusion models

progresses from noise to image and from coarse to fine, showcasing their strong learning ability for both shallow and deep

image features. This sampling process helps the model gradually understand the structure and content of images, leading

to the generation of higher-quality images. 
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However, currently, diffusion models are primarily used in the field of image generation. Unlike discriminative models,

which can easily compute the correlation between predicted results and ground truth, there are only a few generative

tasks that have well-defined ground truth, such as image super-resolution . Currently, there is no research on

incorporating the learning capability of diffusion models into crack detection. 

CrackDiff uses the framework of the diffusion denoising probability model (DDPM) , where the crack image is

embedded and input into a multi-task UNet  network alongside the noise image. In this network, one branch is

responsible for predicting the image’s segmentation result, while the other branch predicts the noise at the current step,

as illustrated in Figure 1. With this design, CrackDiff is capable of accurately learning the distribution and spatial

relationships of pavement cracks. During the initial phases of the sampling process, CrackDiff can learn the approximate

outline of the cracks. In the later stages of sampling, CrackDiff is capable of generating detailed contours of the cracks.

Finally, it can generate highly confident segmentation results.

Figure 1. Overall framework of CrackDiff. The framework consists of a forward diffusion process and a backward

denoising process. At any timestep t in the denoising process, a multi-task UNet network is employed for the simultaneous

prediction of mask and noise. The network takes the sum of the embedding of the current estimation 𝐆𝐓𝑡 and the crack

image as inputs and embeds timestep t into every residual block. Based on the predicted noise, the sampled result

𝐆𝐓𝑡−1 is obtained.

2. Diffusion-Based Method for Pavement Crack Detection

2.1. Pavement Crack Detection

Image-based pavement crack detection methods mainly include threshold segmentation, edge detection, traditional

machine learning, and deep learning techniques. Threshold segmentation methods classify pixels in a given image into

object and background classes based on pixel thresholds . These methods are computationally efficient and fast, but

they are highly sensitive to noise. The edge is the main feature of the cracks in the image. Edge detection methods use

edge detection operators to identify these edges, such as Sobel, Canny, Prewitt, etc. . However, the choice of

parameters in these algorithms can significantly impact the detection of cracks, and finding the optimal parameters for

different images, especially those with complex backgrounds, can be challenging. Traditional machine learning methods

involve manually extracting crack features from images and then using techniques like support vector machines  or

random forests  for feature classification. These methods offer better accuracy compared to traditional image

processing techniques but rely on manually extracted crack features.

Deep learning is currently the most popular method. Semantic segmentation models are widely used in pavement crack

detection because they can classify images pixel by pixel, allowing for quantitative measurement of road crack severity

and density while simultaneously expressing the size and location of the targets. Various image segmentation models,

including FCN , UNet , DeepLabv3+ , and SegNet , have been applied extensively in pavement crack

detection research . To capture the multi-scale spatial features of cracks, techniques such as spatial

pyramids , dilated convolutions , and residual connections  have been incorporated into network designs.

Additionally, attention mechanisms have been widely applied due to their advantages in representing long-range spatial

dependencies and inter-channel correlations , especially transformer-based approaches .

Despite the integration of dilated convolutions, attention mechanisms, and various other techniques into CNN-based

models, the performance of crack detection based on CNNs is still limited by the local receptive field. This limitation

hinders the ability to identify long cracks and capture the entire image background, leading to discontinuous detection

results and susceptibility to noise interference. Additionally, due to the difficulty in accurately labeling ground truth and

data imbalance, the network may easily converge to treating all pixels as background.
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Some studies have already applied the feature learning capability of generative models to crack detection. CrackGAN 

proposed a crack-patch-only (CPO) supervised GAN network for generating crack-GT images. Deep convolutional GAN

 is employed to generate a crack image dataset. Conditional GAN  is used to first extract the road and then detect

cracks. However, due to the simultaneous training of both the generator and discriminator, GANs are challenging to

balance, leading to training instability.

2.2. Diffusion Model

The diffusion model is a type of probabilistic generative model that can be divided into two main stages: the forward noise-

adding stage and the backward denoising stage. In the forward noise stage, original images are progressively corrupted

by adding Gaussian noise to the original data. In the backward denoising stage, the generative model’s task is to learn the

noise-adding in the forward process and recover the original input data from the noisy data. Currently, diffusion models

can be categorized into three main types, namely Denoising Diffusion Probabilistic Models (DDPMs) , Score-based

Generative Models , and Generative Models based on Stochastic Differential Equations . CrackDiff is founded on the

architecture of the DDPM.

The inspiration for the DDPM comes from non-equilibrium thermodynamics, and the training process involves two stages:

the forward diffusion with noise process and the reverse denoising process. To accelerate the sampling speed, for

traditional forward Markov processes, Denoising Diffusion Implicit Models (DDIMs)  has demonstrated that using non-

Markovian processes can still yield good generative results and improve the sampling speed. The IDDPM  reduced the

number of sampling steps by adding cosine noise during the forward noise injection process and introducing learnable

variance during the reverse denoising process. In terms of model structure, D2C  uses the idea of contrastive

representation learning for the diffusion decoder model and improves the quality of representations through contrastive

self-supervised learning. Peebles  replaced the commonly used UNet network for reverse image generation with

transformer networks, achieving better training results. In the realm of conditional diffusion probabilistic models, the

IDDPM  incorporates class information as a conditional embedding in the timestamp embedding, generating images of

a given class. SRDiff  combines diffusion generative models to make predictions for super-high-resolution images (SR)

during the reverse process. It uses the low-resolution information encoded by an encoder as conditional noise to

progressively denoise high-resolution images and generate super-resolution images. SegDiff  adds original image

embeddings to the network and generates segmentation results for the original image.

Apart from the applications mentioned above, diffusion models have been successfully applied to various complex visual

problems, such as image-to-image translation  and image blending , demonstrating the excellent capability of

diffusion models in capturing latent patterns and relationships between samples.
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