

Techniques for Dealcoholization of Wines

Subjects: **Food Science & Technology | Microbiology**

Contributor: Faisal Sam

To adapt to the trends in wine styles, and the effect of climate change on wine alcohol content, different techniques have been used at the various stages of winemaking, among which the physical dealcoholization techniques, particularly membrane separation (nanofiltration, reverse osmosis, evaporative perstraction, and pervaporation) and thermal distillation (vacuum distillation and spinning cone column), have shown promising results and hence are being used for commercial production.

dealcoholization

reduced-alcohol wine

alcohol-free wine

non-alcoholic wine

phenolic composition

volatile composition

aroma compounds

sensory quality

1. Introduction

Wine is an alcoholic beverage popularly produced from fermented grape juice. Wines can be classified as red, rose (pink), or white based on their color, and they can also be classified as table (red, rose, or white), sparkling, or fortified based on their alcohol level or carbon dioxide content [1]. Table wines are wines that are neither fortified nor sparkling and are typically served with food [2]. Fortified wines are made by adding alcohol (usually between 16% and 23%) [1][2][3]. Wines can also be classified based on how much carbon dioxide they contain. Those that contain carbon dioxide (about 10 g/L CO₂) [4] are classified as sparkling wines, while those that do not contain carbon dioxide are classified as "still" wines [1]. The carbon dioxide can be produced naturally during fermentation or added artificially. Based on alcoholic content, wines can further be classified as alcohol-free (< 0.5% v/v), low-alcohol (0.5% to 1.2% v/v), reduced-alcohol (1.2% to 5.5% or 6.5% v/v), lower-alcohol (5.5% to 10.5% v/v), and alcoholic wines (> 10.5% v/v) [5][6]. In addition, wines are also classified according to their sugar content: dry (maximum of 4 g/L sugar), medium dry (between 4 g/L and 12 g/L sugar), semi-sweet (between 12 g/L and 45 g/L sugar), and sweet (minimum of 45 g/L sugar) [7]. However, these classifications are not explicit and may vary between most wine producing countries and the applicable legislations. In the UK, for example, wines with an alcohol content of 1.2% alcohol by volume (ABV) or less are classified as low alcohol wines, while wines with an alcohol content of less than 0.5% ABV are referred to as non-alcoholic wines. In contrast, China classifies low alcohol wines as wines with 1.0% to 7.0% ABV and non-alcoholic wines as wines with 0.5% to 1.0% ABV [8].

From several studies (in vitro and in vivo), there is a positive consent of the beneficial impact of wine consumption on neurological diseases, cardiovascular disease, osteoporosis, diabetes, and longevity [9][10][11][12][13][14]. When consumed in adequate amounts and together with a meal, wine plays a vital role in mitigating oxidative stress and vascular endothelial damage induced by a high-fat meal [15]. According to Boban et al. [15], red wine consumption

may help prevent heart diseases as well as type two diabetes, allowing consumers to enjoy better health and an increased lifespan as they age. A Chinese study on alcohol and mortality in middle-aged men discovered a 19% reduction in deaths with no more than two drinks per day [16]. Furthermore, a study conducted by Buettner and Skemp [17] on blue zones revealed adequate wine intake as one of the nine lifestyle habits in populations around the world that are known for their long lifespan and healthy aging. Despite the benefits associated with wine consumption, some consumers perceive wine to be harmful to human health because it contains alcohol [18].

High concentrations of ethanol in wine increase the sensation of hotness and bitterness, while decreasing acidity and masking the sensitivity of certain essential aroma compounds such as esters, higher alcohols, and monoterpenes [19][20][21]. Furthermore, high alcohol wines are subject to higher import duties and taxes in some countries [22]. For example, in the United States, wine with 14% alcohol or less is taxed at USD 1.07 per gallon, while wine with 14.1% to 21% alcohol is taxed at USD 1.57 per gallon [23]. There is a common view all over the world that the consumption of alcoholic wine should lessen in favor of low or non-alcoholic wines [24][25][26]. This is currently being witnessed globally as there is a growing popularity of low- or non-alcoholic wines and beverages, particularly in Europe and North America (www.factmr.com/report/4532/non-alcoholic-wine-market, accessed on 1 September 2021). Consumer preferences are shifting with consumers in the non-alcoholic wine market wanting new product offerings and alternatives. There is also an increasing percentage of the adult population seeking lower alcohol wines and beverages more frequently, which has boosted non-alcoholic wine sales. This trend has prompted producers to introduce new non-alcoholic wine products with fruity and floral notes. Additionally, the global non-alcoholic wine market size is valued at USD 20 billion with a compound annual growth rate (CAGR) of over 45% in 2018 and is projected to increase at a remarkable CAGR of over 7% during the forecast period (2019–2027), reaching a value pool of over USD 30 billion [24]. According to another school of thought (www.factmr.com/report/4532/non-alcoholic-wine-market, accessed on 1 September 2021), the global market will continue to grow steadily, with a CAGR of 10.4% from 2021 to 2031, up from an 8.8% CAGR from 2016 to 2020. Therefore, for wine producers to meet consumers' demands and adapt to the rising non-alcoholic wine market, they need to produce high-quality alcohol-free or low-alcoholic wines (**Figure 1**).

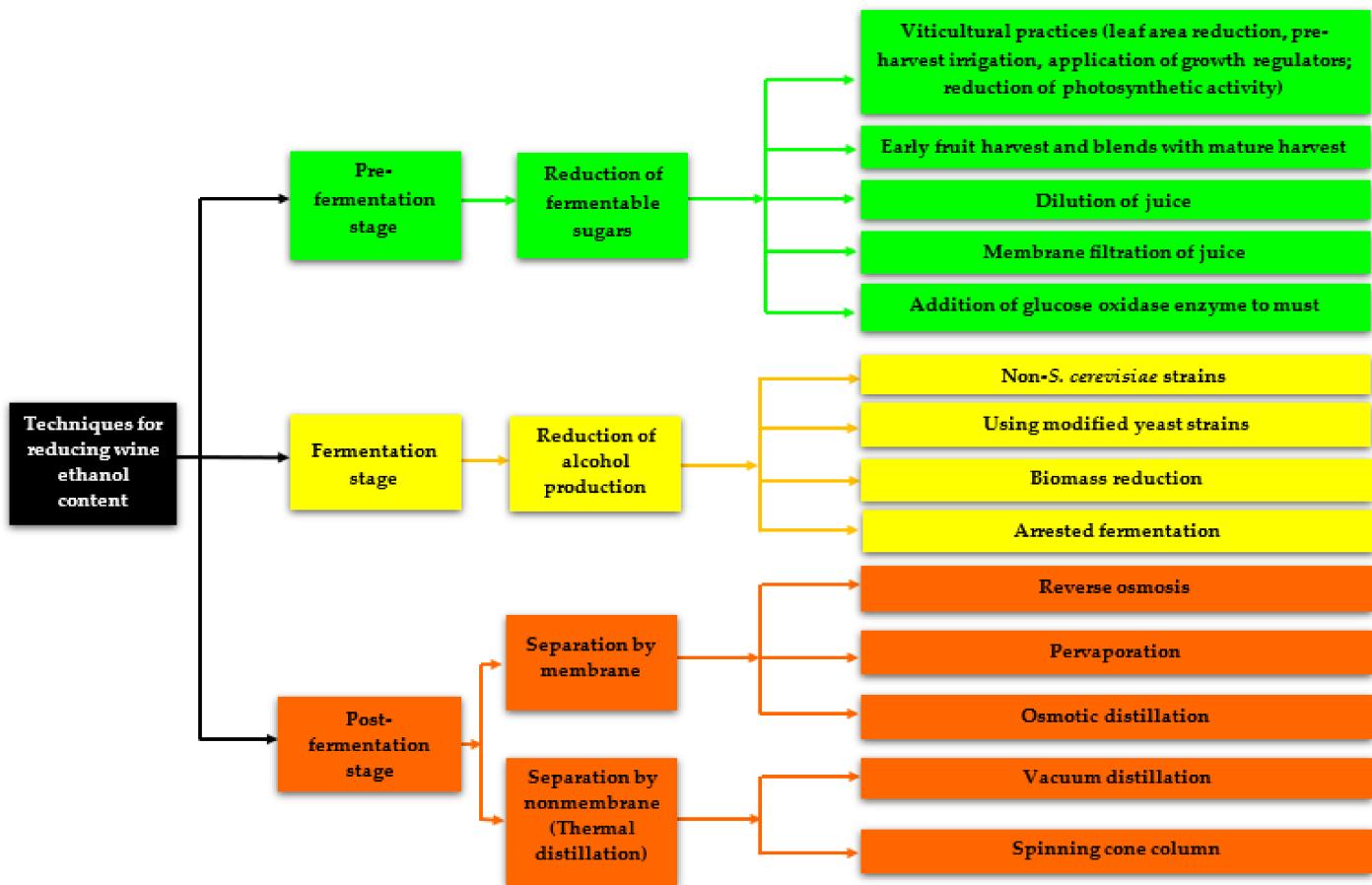


Figure 1. Techniques for alcohol reduction in wines and fermented beverages.

2. Techniques for Wine Alcohol Reduction

A summary of some techniques commonly used for the dealcoholization of wines at the various stages (pre-fermentation stage, fermentation stage, and post-fermentation stage) of wine production and their extent of ethanol removal is shown in **Table 1**.

Table 1. Different techniques to reduce wine alcohol content in the several stages of wine production.

Stage of Wine Production	Ethanol Removal Process	Technology	Alcohol Content Reduction	References
Pre-fermentation	Reduction of fermentable sugars	Viticultural practices (leaf area reduction, pre-harvest irrigation, application of growth regulators; reduction in photosynthetic activity)	Up to 2% v/v	[27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45]

Stage of Wine Production	Ethanol Removal Process	Technology	Alcohol Content Reduction	References
Fermentation	Reduction of alcohol production	Early fruit harvest and blends with mature harvest	Up to 3% v/v	[46][47][48][49][50][51][52][53][54][55][56]
		Dilution of grape must	Up to 7% v/v	[51][52][53][57][58][59][60][61][62][63]
		Filtration of must	Up to 5% v/v	[64][65][66][67][68][69][70][71][72][73]
		Addition of enzyme (glucose oxidase)	Up to 4% v/v	[5][74][75][76][77][78][79]
Post-fermentation	Separation by membrane	Use of Non-Saccharomyces cerevisiae yeasts	Up to 2% v/v	[80][81][82][83][84][85][86][87][88][89][90][91][92][93][94][95][96][97][98][99][100][101][102][103][104][105][106][107][108][109][110]
		Use of modified yeast strains	Up to 3.6% v/v	[111][112][113][114][115][116][117][118][119][120][121][122]
		Biomass reduction	Up to 4% v/v	[123][124][125]
Post-fermentation	Separation by membrane	Arrested fermentation	High reduction	[5][126]
		Nanofiltration (NF)	Up to 4% v/v	[67][127][128][129][130][131][132]

Stage of Wine Production	Ethanol Removal Process	Technology	Alcohol Content Reduction	References
		Reverse osmosis (RO)	Up to 0.5% v/v or less	[22][133][134][130][135][136][137][138]
		Osmotic distillation (OD)	Up to 0.5% v/v or less	[133][139][140][138][141][142][143][144][145][146]
		Pervaporation (PV)	Up to 0.5% v/v or less	[147][148][149][150][151][152][153]
		Vacuum distillation (VD)	Up to 1% v/v or less	[154][155][156]
		Spinning cone column (SCC)	Up to 0.3% v/v	[157][158][159][160][161][162]
		Multi-stage membrane-based systems	Up to 0.5% v/v or less	[70][136][163][164][165][166]

Perspective. In Alcoholic B

The Netherlands, 2019; pp. 419–470.

4. Jackson, R.S. Innovations in Winemaking; Elsevier: Amsterdam, The Netherlands, 2017.

5. Pickering, G.J. Low and Reduced-Alcohol Wine: A Review. *J. Wine Res.* 2000, 11, 37–41.

3. Impact of Dealcoholization Techniques on Wine Quality

6. Saliba, A.J.; Ovington, L.A.; Moran, C.C. Consumer Demand for Low-Alcohol Wine in an

3.1. Impact on phenolic composition. *Food Environ. Viability* 2013, 5, 1–8.

The phenolic composition of wine is made up of flavonoids and non-flavonoids [167]. Flavonoids include flavones, flavanols (+)-catechin and (-)-epicatechin, flavonols (quercetin, myricetin, kaempferol, and rutin), anthocyanins, and proanthocyanidins while non-flavonoids are mainly resveratrol (3,4,5-trihydroxystilbene), hydroxybenzoic acids (p-hydroxybenzoic, vanillic, syringic, gallic, gentisic, salicylic, and protocatechuic acids), and hydroxycinnamic acids (caffeic, coumaric, and ferulic acids) [29][168][169][170][171][172].

8. Wine Australia. Low Alcohol Wine. Wine Australia: Adelaide, Australia, 2021.

9. Taborsky, M.; Ostadal, P.; Petrek, M. A Pilot Randomized Trial Comparing Long-Term Effects of Red and White Wines on Biomarkers of Atherosclerosis (In Vino Veritas; IVV Trial). *Bratisl. Lek. List.* 2012, 113, 156–158.

Health-wise, phenolic compounds can be effective in the prevention of cardiovascular diseases [174][175][176].

10. D'Urso, L.; Oñate, A.; Valente, R.; Gómez, P.; Coloma, C.; De Lorenzo, A. Inake of Red Wine and Different Meals Modulates Oxidized LDL Level, Oxidative and Inflammatory Gene Expression in

[159][164][178] People in a Randomized Crossover Trial. *oxidative Medit Gebr Winge de 2014* [2014] by physical dealcoholization methods are summarized in **Table 2**.

11. World Health Organisation. *Global Status Report on Alcohol and Health 2018*; WHO: Geneva,

Switzerland, 2018; Volume 65.

Table 2. Some reported changes in wine phenolic compounds using different dealcoholization processes.

12. World Health Organisation. *Global Status Report on Alcohol and Health 2014*. 2014, pp. 1–392.

Wine Type	Dealcoholization Process	Alcohol Reduction		Reported Effects on Phenolic Composition	Reference
		Co (% v/v)	Cf (% v/v)		
		12.0	6.0–4.0		
1	Red wine	NF		Reduction in wine alcohol volume by a factor of 4 leads to 2.5–3 times more anthocyanins and resveratrol in the wine concentrates	[128]
1	Cabernet Sauvignon–Merlot–Tempranillo red wine	RO	12.7	No significant differences were observed in total anthocyanins and phenolic compounds for both original and dealcoholized wines. Colour intensity increased by around 20% in dealcoholized wines (due to the concentration effect from the removal of ethanol as well as the retention of anthocyanins by the membrane), while the tonality diminished by around 15%	[179]
1	Cabernet Sauvignon red wine	RO	14.8	The total phenolic index, total proanthocyanidins, and percentages of procyanidins, prodelphinidins, and galloylation of partially dealcoholized wines and the control wine remains almost unchanged and did not differ. Control wine and partially dealcoholized wines have statistically similar total anthocyanin concentrations with no observed color differences between these wines	[22]
2	Grenache–Carignan red	RO	16.2	The total phenolic index and total proanthocyanidins of partially dealcoholized	[22]

Dealcoholization by Reverse Osmosis on Red Wine Composition and Sensory Characteristics. *Eur. Food Res. Technol.* 2013, 237, 481–488.

Wine Type	Dealcoholization Process	Alcohol Reduction		Reported Effects on Phenolic Composition	Reference	Label
		Co (% v/v)	Cf (% v/v)			
white wine				wines and the control wine remain almost unchanged and do not differ. Slight but statistically significant differences were observed in the percentages of procyanidins, prodelphinidins, and galloylation during alcohol reduction. Total anthocyanin concentrations of partially dealcoholized wines were statistically significantly higher than that of the control wine		Volume
Montepulciano d'Abruzzo red wine	RO	13.2	9.0	Increase in total phenols and decrease in total anthocyanins during ethanol reduction in wine samples. Color intensity increases during ethanol removal	[138]	ni, S. of Fruit, 369–
Aglianico red wine	OD/EP	12.8	4.9–0.4	Higher amount of total phenols in dealcoholized wine samples compared to the original wine. Color intensity decreased slightly at the end of dealcoholization	[180]	level: Leaf
Aglianico red wine	OD/EP	13.5–10.8		The alcohol removal process did not affect the content of vanillin reactive flavans and total phenolics. A loss of 49% of total monomeric anthocyanins was observed after dealcoholization while total anthocyanins remained almost unchanged with no significant differences. Color parameters of dealcoholized wines were not significantly different compared to the original wine after alcohol removal	[144]	Current Basal raz

3. Impellati, R., Anegro, G., Mavanda, M., Pastore, G., Valenzano, G., Marchi, G. Effect of Late Season Limitations Induced by Trimming and Antitranspirants Canopy Shrub on Grape Composition during Ripening in *Vitis Vinifera* Cv. Sangiovese Progr. Agric. Vitic. Hors Série Spec. 2011, 17, 259–262.

Wine Type	Dealcoholization Process	Alcohol Reduction		Reported Effects on Phenolic Composition	Reference
		Co (% v/v)	Cf (% v/v)		
Merlot red wine	OD/EP	13.8	11.1–8.9	The alcohol removal process did not affect the content of vanillin reactive flavans and total phenolics. A loss of 57% of total monomeric anthocyanins was observed after dealcoholization while total anthocyanins remained almost unchanged with no significant differences. Color parameters of dealcoholized wines were not significantly different compared to the original wine after alcohol removal	[144]
Piedirosso red wine	OD/EP	13.6	11.5–8.4	The alcohol removal process did not affect the content of vanillin reactive flavans and total phenolics. A loss of 52% of total monomeric anthocyanins was observed after dealcoholization while total anthocyanins remained almost unchanged with no significant differences. Color parameters of dealcoholized wines were not significantly different compared to the original wine after alcohol removal	[144]
Aglianico red wine	OD/EP	12.5	10.6	No significant differences between base wine and dealcoholized wine in terms of total polyphenols and color intensity	[146]
Barbera red wine	OD/EP	15.2	5.0	Higher contents of total anthocyanins and total flavonoids compared to the original wine. Color: the intensity increases and the hue	[155]

47. Bindon, K.; Holt, H.; Williamson, P.O.; Varela, C.; Herderich, M.; Francis, I.L. Relationships between Harvest Time and Wine Composition in *Vitis Vinifera* L. Cv. Cabernet Sauvignon 2. Wine Sensory Properties and Consumer Preference. *Food Chem.* 2014, 154, 90–101.

4	Wine Type	Dealcoholization Process	Alcohol Reduction		Reported Effects on Phenolic Composition	Reference	Vine. 29
			Co (%) v/v)	Cf (%) v/v)			
4					decreases (loss of orange notes) due to the increased content of total anthocyanins		
5	Langhe Rosè wine	OD/EP	13.2	5.0	Higher contents of total anthocyanins and total flavonoids compared to the original wine. Color: the intensity increases and the hue decreases (loss of orange notes) due to the increased content of total anthocyanins	[155]	Producing Based
5	Verduno	OD/EP	14.6	5.0	Higher contents of total anthocyanins and total flavonoids compared to the original wine. Color: the intensity increases and the hue decreases (loss of orange notes) due to the increased content of total anthocyanins	[155]	versus Impact
5	Pelaverga red wine	OD/EP	12.5	9.8–0.3	At different alcohol content levels of wines, the total phenols and flavonoids do not differ significantly as they remain almost unchanged during the alcohol removal process	[140]	ence of id 'ines.
5	Falanghina white wine	OD/EP	8.3–5.4		Both total phenols and total anthocyanins decrease in dealcoholized wines with no significant differences compared to the original wine. The color intensity remains almost unchanged during ethanol removal	[138]	ersari, Combined 201–
5	Montepulciano d'Abruzzo red wine	OD/EP	13.2	8.3–2.7	Flavonoids and phenolic compounds remain almost unchanged in all dealcoholized samples compared to the base wine with no significant differences. Color intensity (evaluated by flavonoids and phenolic	[139]	sting Sci. Juice
5	Montepulciano d'Abruzzo red wine	OD/EP	13.2	8.3–2.7	Manipulations on Cabernet Sauvignon Wine Sensory Characteristics. South African J. Enol. Vitic. 2013, 34, 86–99.		ars, vol

Wine Type	Dealcoholization Process	Alcohol Reduction		Reported Effects on Phenolic Composition	Reference
		Co (% v/v)	Cf (% v/v)		
compounds) decrease slightly in all dealcoholized samples					
Langhe Rosè wine	VD	13.2	5.0	Higher contents of total anthocyanins and total flavonoids compared to the original wine. Color: the intensity increases and the hue decreases (loss of orange notes) due to the increased content of total anthocyanins	[155]
Barbera red wine	VD	15.2	5.0	Higher contents of total anthocyanins and total flavonoids compared to the original wine. Color: the intensity increases and the hue decreases (loss of orange notes) due to the increased content of total anthocyanins	[155]
Verduno ^[124] Pelaverga red wine	VD	14.6	^[140] 5.0	Higher contents of total anthocyanins and total flavonoids compared to the original wine. Color: the intensity increases and the hue decreases (loss of orange notes) due to the increased content of total anthocyanins	[155]
Red wine ^[179]	SCC ^[164]	14.0	< 0.3	Increase in phenolic compounds, total phenolic, flavonol, tartaric ester, and anthocyanin contents by approximately 24%. Higher content of resveratrol than the original wine ^[22]	[159]
Rose wine	SCC ^[181]	14.0	^[128] < 0.3	Increase in phenolic compounds, total phenolic, flavonol, tartaric ester, and anthocyanin contents by approximately 24%.	[159]

The composition of volatile compounds influences the overall aroma and flavor of wine [182][183][184][185][186]. Wine Flavored Low Alcohol White Wines. *Food Bioprod. Process.* 2017, 101, 11–21. contains over 1000 volatile compounds of various chemical classes (alcohols, esters, fatty acids, aldehydes, terpenes, ketones, and sulfur compounds), and wine fermentation produces approximately 400 volatile compounds

Wine Type	Dealcoholization Process	Alcohol Reduction		Reported Effects on Phenolic Composition			Reference	
		Co (% v/v)	Cf (% v/v)					
Higher content of resveratrol than the original wine								
Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction	Volatile Composition		Sampling and Analytical Method	
				Co (% v/v)	Cf (% v/v)	Volatile Compounds	Estimated Average Losses (%)	
NF	White model wine	TORAY-UB70	Batch retentate-recycling mode			Diethyl succinate	2.4	
			T = 15	12.0	8.4	2-phenyl-ethanol	2.9	
			P = 10			cis-3-hexenol	12.6	
RO	Red Wine	Polyamide, NF9, Alfa Laval	T = 30			Isovaleric acid	11.7	
			P = 16	12.0	9.1	Total volatile aroma**	30.0	
							GC-FID	

81. Canonico, L.; Comitini, F.; Oro, L.; Ciani, M. Sequential Fermentation with Selected Immobilized Non- *Saccharomyces* Yeast for Reduction of Ethanol Content in Wine. *Front. Microbiol.* 2016, 7, 278.
82. Ferraro, L.; Faticanti, F.; Ciani, M. Pilot Scale Vinification Process Using Immobilized *Candida Stellata* Cells and *Saccharomyces cerevisiae*. *Process Biochem.* 2000, 35, 1125–1129.
83. García, V.; Vásquez, H.; Fonseca, F.; Manzanares, P.; Viana, F.; Martínez, C.; Ganga, M.A. Effects of Using Mixed Wine Yeast Cultures in the Production of Chardonnay Wines. *Rev. Argent.*

Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Volatile Composition		Sampling and Analytical Method		Reference	Yeast
				Co (%) v/v	Cf (%) v/v)	Volatile Compounds	Estimated Average Losses (%)				
						Isovaleric acid	11.9–18.1			21,	
	Red Wine	Cellulose acetate, CA995PE	T = 30°C P = 16	12.0	8.4	Total aroma**	90.0	GC-FID	[189]	Comini, et al., 2018.	
	Montepulciano d'Abruzzo red wine	RO membrane (100 DA)	T = 10 P = ns Time = 40			Alcohols Acids Esters Phenols Lactones	30.0 22.0 8.0 13.0 14.0	SPME–GC/MS	[138]	S. Comini, et al., M. Cianci, et al., 2019.	
OD/EP	Model wine	Polyvinylidene fluoride (PVDF) Memcor	Qf = 0.053 Qs = 0.093 T = 30 Time = 60	13.0	8.1	Isoamyl alcohol Ethyl acetate	44.0 70.0	GC-FID	[190]	sm of during	
	Falanghina white wine	Liqui–Cel 0.5 × 1, PP hollow fiber	Qf = 0.07 Qs = 0.14 T = 10	12.5	9.8–0.3	Higher alcohols Acids Esters	49.5–98.9 60.5–98.7	LE–GC/MS, LE–GC/FID	[140]	rains 1, 85–	

Wines Fermented with Selected Non-Saccharomyces Yeasts under Different Aeration Conditions. Food Microbiol. 2019, 84, 103247.

93. Tofalo, R.; Schirone, M.; Torriani, S.; Rantsiou, K.; Cocolin, L.; Perpetuini, G.; Suzzi, G. Diversity of *Candida zemplinina* Strains from Grapes and Italian Wines. Food Microbiol. 2012, 29, 18–26.
94. Varela, C. The Impact of Non-Saccharomyces Yeasts in the Production of Alcoholic Beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874.
95. Ciani, M.; Comitini, F. Use of Non-Saccharomyces Yeasts in Red Winemaking. In Red Wine Technology; Academic Press: Cambridge, MA, USA, 2019; pp. 51–68.

G	Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Volatile Composition		Sampling and Analytical Method	Reference	thanol on of
					Co (%) v/v	Cf (%) v/v)	Volatile Compounds	Estimated Average Losses (%)			
9				Time = 240			Ketones	71.5–99.0			New 2010,
9							lactones	67.1–99.9			
9								73.6–98.2), 67–
10							Isoamyl acetate				ling the ecies.
10				Qf = 10				27.0			
10		Xarello white wine	Liqui-Cel ExtraFlow	Qs = 10			Ethyl hexanoate	37.0	SBSE–GC/MS	[142]	Sensitivity Appl.
10				T = room temperature	11.5	10.1	Ethyl octanoate	28.0			
10				Time = 20			Ethyl decanoate	24.0			
10											All Wine
10		Soave white wine	PTFE hollow fiber (Teflon, Verona, Italy)	Qf = 0.2	ns	*	Alcohols	12.6–32.2	SPE–GC/MS	[191]	ected by Saccharomyces
10				Qs = 0.2			Acids	5.6–			
10				T = 20			Esters	16.4			
10				Time = ns			Terpenes	34.0–58.4			
10								22.0–26.0			

Musts. Food Control 2015, 51, 129–134.

106. Contreras, A.; Hidalgo, C.; Henschke, P.A.; Chambers, P.J.; Curtin, C.; Varela, C. Evaluation of Non-Saccharomyces Yeasts for the Reduction of Alcohol Content in Wine. *Appl. Environ. Microbiol.* 2014, 80, 1670–1678.

107. Contreras, A.; Curtin, C.; Varela, C. Yeast Population Dynamics Reveal a Potential 'Collaboration' between *Metschnikowia pulcherrima* and *Saccharomyces uvarum* for the Production of Reduced Alcohol Wines during Shiraz Fermentation. *Appl. Microbiol. Biotechnol.* 2014, 99, 1885–1895.

10	Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Volatile Composition		Sampling and Analytical Method		a [10-11]
					Co (%) v/v)	Cf (%) v/v)	Volatile Compounds	Estimated Average Losses (%)	Reference		
10											199,
11											colin, L. unol
11	Verdicchio white wine	PTFE hollow fiber (Teflon, Verona, Italy)		Qf = 0.2 Qs = 0.2 ns T = 20 Time = ns			Alcohols Acids Esters Terpenes	8.9– 25.8 8.0– 15.8 40.0– 54.1 21.0– 28.0	SPE–GC/MS	[191]	ischke, siae 08–
11							Alcohols	8.4– 31.8			ediol
11							Esters	42.9– 60.9			Strains
11	Aglianico red wine	Liqui–Cel Extra–flow, PP hollow fiber		Qf = 0.583 Qs = 0.183 13.8 T = 20 Time = 283		11.6– 8.8	Acids Terpenes Others: Benzaldehyde ?– Butyrolactone	12.5– 17.1 13.8– 32.3 55.3– 65.9 4.5– 13.6	SPE–GC/MS	[133]	o Web c cerol
11											siae

Yeast That Exhibits Reduced Ethanol Production during Fermentation under Controlled

Microoxygenation Conditions. *Appl. Environ. Microbiol.* 2006, 72, 5822–5828.

117. Heux, S.; Cachon, R.; Dequin, S. Cofactor Engineering in *Saccharomyces cerevisiae*: Expression of a H₂O-Forming NADH Oxidase and Impact on Redox Metabolism. *Metab. Eng.* 2006, 8, 303–314.

118. Rossouw, D.; Heyns, E.H.; Setati, M.E.; Bosch, S.; Bauer, F.F. Adjustment of Trehalose Metabolism in Wine *Saccharomyces cerevisiae* Strains to Modify Ethanol Yields. *Appl. Environ. Microbiol.* 2013, 79, 5197–5207.

119. Tilloy, V.; Ortiz-Julien, A.; Dequin, S. Reduction of Ethanol Yield and Improvement of Glycerol Formation by Adaptive Evolution of the Wine Yeast *Saccharomyces cerevisiae* under

12	Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Volatile Composition		Sampling and Analytical Method	Reference	Additional
					Co (%) v/v)	Cf (%) v/v)	Volatile Compounds	Estimated Average Losses (%)			
12							Alcohols	9.2–13.7		N-	
12							Esters	33.8–50.6		oations	
12							Acids				
12							Terpenes	11–18.5		slow	
12							Others:	3.6–		[133]	2008,
12							Benzaldehyde	14.5			
12							?	nf			
12							Butyrolactone	12.9			
12							Vitispirane	Unc			
12											
12		Aglianico red wine	Liqui-Cel Extra-flow, PP hollow fiber	Qf = 0.583	Qs = 0.183	15.5	13.5–10.8	Alcohols	57.9–99.9	LE–GC/MS, LE–GC/FID	[145]
12							Acids				
12							Esters	23.6–78.9			
12							Time = 255				
12							Sulfur compounds	12.8–89.9			
12							Phenols	2.1–78.7			
12							Ketones and lactones	66.7–100			
12							Aldehydes				

130. Labanda, J.; Vichi, S.; Llorens, J.; López-Tamames, E. Membrane Separation Technology for the Reduction of Alcoholic Degree of a White Model Wine. *LWT Food Sci. Technol.* 2009, 42, 1390–1395.

131. Mangindaan, D.; Khoiruddin, K.; Wenten, I.G. Beverage Dealcoholization Processes: Past, Present, and Future. *Trends Food Sci. Technol.* 2018, 71, 36–45.

132. Takács, L.; Korány, K.; Vatai, G. Process Modelling in the Production of Low Alcohol Content Wines by Direct Concentration and Diafiltration Using Nanofiltration Membranes. *Acta Aliment.* 2010, 39, 397–412.

13	Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Volatile Composition		Sampling and Analytical Method	Red
					Co (% v/v)	Cf (% v/v)	Volatile Compounds	Estimated Average Losses (%)		
									Reference	
13								23.6–97.9		Apple
13								unc–100		sis in
13							Ethyl acetate			S. J.
13							Isoamyl acetate	37.4		
13							Isoamyl alcohol	34.9		sis.
13								13.7		
13	Merlot red wine	Liqui-Cel Extra-flow, PP hollow fiber		Qf = 5.8	13.4	11.3	Ethyl hexanoate	33.0	HS/SPME–GC/MS	[141] volatile Eur.
13				Qs = 8.1						
13				T = 20						
14				Time = 60			Ethyl octanoate	67.8		
14								14.5		
14							Linalool	13.6		1 on 2019,
14	Barbera red wine	Polypropylene hollow fibers (JU.CLA.S. LTD, Verona, Italy)		Time = 360			2-Phenylethyl acetate			or 146.
143.	Ferrarini, R.; Maria, G.; Camin, F.; Bandini, S.; Gostoli, C. Variation of Oxygen Isotopic Ratio during Wine Dealcoholization by Membrane Contactors: Experiments and Modelling. <i>J. Memb. Sci.</i> 2016, 498, 385–394.	[155]								

143. Ferrarini, R.; Maria, G.; Camin, F.; Bandini, S.; Gostoli, C. Variation of Oxygen Isotopic Ratio during Wine Dealcoholization by Membrane Contactors: Experiments and Modelling. *J. Memb. Sci.* 2016, 498, 385–394.

144. Gambuti, A.; Rinaldi, A.; Lisanti, M.T.; Pessina, R.; Moio, L. Partial Dealcoholisation of Red Wines by Membrane Contactor Technique: Influence on Colour, Phenolic Compounds and Saliva Precipitation Index. *Eur. Food Res. Technol.* 2011, 233, 647–655.

145. Liguori, L.; Russo, P.; Albanese, D.; Di Matteo, M. Evolution of Quality Parameters during Red Wine Dealcoholization by Osmotic Distillation. *Food Chem.* 2013, 140, 68–75.

14	Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Volatile Composition		Sampling and Analytical Method		Reference	
					Co (%) v/v	Cf (%) v/v)	Volatile Compounds	Estimated Average Losses (%)	2524.			
14											Food	
14											a. Sep.	
14	Tempranillo red wine	Liqui-Cel ExtraFlow		Qf = 5.8 Qs = 5.8 T = room temperature Time = 60	13.3	9.0	Isoamyl alcohol Ethyl hexanoate	21.0 20.0	SBSE-GC/MS	[142]	alcoholic	
15											alcoholic	
15	Garnacha red wine	Liqui-Cel ExtraFlow		Qf = 5 Qs = 5 T = room temperature Time = 60	13.9	9.3	Isoamyl acetate Ethyl hexanoate	24.0 36.0	SBSE-GC/MS	[142]	alcoholic	
15											alcoholic	
15	Verduno Pelaverga red wine	Polypropylene hollow fibers (JU.CLA.S. LTD, Verona, Italy)		Qf = 1.6 Qs = 0.8 T = 10 Time = 360	14.6	5.0	Alcohols Acids Esters	59.9 23.6 45.2	SPE-GC/FID	[155]	alcoholic	
15	Montepulciano d'Abruzzo red wine	Liqui-Cel 0.5×1, PP hollow fiber		Recycling mode Qf = 1.5	13.2	8.3–2.7	Alcohols Acids	56.0–84.0	SPE-LE-GC/MS/FID	[139]	alcoholic	

Physical Parametres of White and Red Wines Obtained by Dealcoholization Method. J. Agroaliment. Proc. Technol. 2014, 20, 215–219.

157. Schmidtke, L.M.; Blackman, J.W.; Agboola, S.O. Production Technologies for Reduced Alcoholic Wines. J. Food Sci. 2012, 77, 25–41.

158. Belisario-Sánchez, Y.Y.; Taboada-Rodríguez, A.; Marín-Iniesta, F.; Iguaz-Gainza, A.; López-Gómez, A. Aroma Recovery in Wine Dealcoholization by SCC Distillation. Food Bioprocess Technol. 2012, 5, 2529–2539.

159. Belisario-Sánchez, Y.Y.; Taboada-Rodríguez, A.; Marín-Iniesta, F.; López-Gómez, A. Dealcoholized Wines by Spinning Cone Column Distillation: Phenolic Compounds and Antioxidant

16	Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Volatile Composition		Sampling and Analytical Method	Reference
					Co (%) v/v	Cf (%) v/v)	Volatile Compounds	Estimated Average Losses (%)		
16				Qs = 0.5			Esters	18.0–23.0		
16				T = 10			Lactones			
16				Time = 240			Phenols	64.0–85.0		
16							Others:	11.0–37.0		
16							Benzaldehyde	11.0–37.0		
16							α-Terpineol	11.0–37.0		
16								2.0–26.0		
16								5.0–49.0		
16										partial
16	Montepulciano d'Abruzzo red wine	Liqui-Cel mini module 1.7x5.5	Membrana	Recycling mode	13.2	8.3–5.4	Alcohols	2.0–3.0	SPME–GC/MS	[138] S.
16				Qf = 1.5			Acids			108.
16				Qs = 0.5			Esters	18.0–25.0		
16				T = 10			Phenols	15.0–19.0		
16				Time = 120			Lactones	5.0–10.0		

169. Cuzmar, P.D.; Salgado, E.; Ribalta-Pizarro, C.; Olaeta, A.; Eugenio, L.; Pastenes, C.; Alejandro, C. Original Article Phenolic Composition and Sensory Characteristics of Cabernet Sauvignon Wines: Effect of Water Stress and Harvest Date. *Int. J. Food Sci. Technol.* 2018, 53, 1–10.

170. Ivanova, V.; Stefova, M.; Chinnici, F. Determination of the Polyphenol Contents in Macedonian Grapes and Wines by Standardized Spectrophotometric Methods. *J. Serb. Chem. Soc.* 2010, 75, 45–59.

171. Cozzolino, D. The Role of Visible and Infrared Spectroscopy Combined with Chemometrics to Measure Phenolic Compounds in Grape and Wine Samples. *Molecules* 2015, 20, 726–737.

17	Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Volatile Composition		Sampling and Analytical Method	
					Co (% v/v)	Cf (% v/v)	Volatile Compounds	Estimated Average Losses (%)	Reference	
17								7.0–25.0		
175. Doonan, C. J., et al. (2018). Dealcoholization of Langhe Rosè wine using hollow fiber membranes. <i>Journal of the American Heart Association</i> , 7, e008155. [155]	Langhe Rosè wine	Polypropylene hollow fibers (JU.CLA.S. LTD, Verona, Italy)	Qf = 1.6 Qs = 0.8 T = 10 Time = 360				Alcohols Acids Esters	60.4 30.9 47.8	SPE–GC/FID	
17		Tokaji Hárlevelű white wine	PERVAP.Sulzer 1060 PDMS	“Carrier gas mode” under atmospheric pressure T = 40–70	13.1	0.1	Total volatile aroma**	70.0	Distillation/LE–GC/MS	[147]
17	PV	Cabernet Sauvignon red wine	PDMS JS–WSM–8040 (JiuSi High–Tech, Nanjing, China)	Batch operation T = 45 VP = 0.05			Alcohols Acids Esters	19.7–39.5 12.7–28.2 48.0–99.9	GC/MS	[192]
18	VD	Barbera red wine	–	T = 15	15.2	5.0	Alcohols Acids	50.4 13.7	SPE–GC/FID	[155]

comminuted losses were present, SFE = solid fat esterification, GC = gas chromatography, MS = mass pp. 325–330.

spectrometry; LE = liquid extraction; FID = flame ionization detector; SBSE = stir bar sorptive extraction; HS =

181 Venabot, S. M. Durup, K. Boulaouane, Rettermann, M. Cheyrouze, V. Pellerin, P. Moutoulet, M.; Vacuum Composition of Tartrate Precipitates Deposited on Stainless Steel Tanks During the Cold

Stabilization of Wines. Part I. White Wines. Am. J. Enol. Vitic. 1999, 50, 391–397.

Several studies have reported on the use of membrane techniques in wine dealcoholization and their subsequent effect on the dealcoholized wine volatile compositions. [\[147\]](#) [\[133\]](#) [\[139\]](#) [\[140\]](#) [\[130\]](#) [\[135\]](#) [\[138\]](#) [\[145\]](#) [\[155\]](#) [\[190\]](#) Wines: Chemical and Sensory Characterization. *Food Rev. Int.* 2019, 119, 125. A low alcohol content

apple cider was produced by RO with a polyamide membrane AFC99 in both batch and diafiltration configurations

¹³⁵ During the process, 74% of the total volatiles were removed with a feed flow of 200 L/h. During the batch configuration process, 50% of the volatiles were removed with an estimated loss of 77% of total higher alcohols, 20% of total aldehydes, 25% of total acids, and 25% of total esters. In the diafiltration configuration, estimated losses of 96%

Alcohol in Wine. *Beverages* 2015, **1**, 292–310. dealcoholization of wines can result in significant losses of volatile compounds due to the reduction in alcohol levels. However, the significance and extent of the changes can also depend on the perceptions applied, the type of model wine, and the non-volatile matrix of wine. *Texture Stud.* 2005, **36**, 303–323.

3.3. Impact on Sensory Characteristics

Astringency and Bitterness of Grape Seed Tannin Oligomers in Model Wine Solution. *Food Qual. Prefer.* 2008, 19, 286–291. The volatile compounds in wine and its concentration can influence the perception of wine aroma and flavor as well as several mouthfeel and taste sensations [141] [177] [194] [195]. Higher ethanol concentrations in wine typically enhance sensitivity to body, bitterness, and hotness, whereas lower concentrations can reduce the perception to aroma, flavor, acidity, and astringency [19] [20] [196] [197] [198]. Some studies have been

19	Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Volatile Composition		Sampling and Analytical Method	Reference	[147][130][141] SS and nined by findings ation		
					Co (%) v/v)	Cf (%) v/v)	[157][191][199][200] Volatile Compounds	Estimated Average Losses (%)					
					T = 30								
20	Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Findings on Sensory Characteristics		Reference				
20	NF	Red Wine	Polyamide, NF97, NF99 HF Alfa	T = 30 P = 16 Laval	Co (%) v/v)	Cf (%) v/v)	12.0	9.1	Increase in astringency and unbalanced aroma and taste due to alcohol reduction				
	RO	Syrah red wine	ns	T = ns P = ns	12.7	11.1– 9.6	Decrease in wine length in the mouth and increase in red fruits and then woody and blackcurrant perceptions (using TDS and attributed to alcohol reduction). Decrease in heat and sweetness				[178][189]		

Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Findings on Sensory Characteristics	Reference
				Co (% v/v)	Cf (% v/v)		
						intensity (attributed to alcohol reduction) and red fruit intensity (attributed to RO)	
Merlot red wine	ns	T = ns P = ns	13.4	11.8–10.2	Decrease in wine length in the mouth and increase in astringent and then of fruity perceptions (using TDS and attributed to alcohol reduction). Decrease in heat and texture intensity (attributed to alcohol reduction) and increase in acid intensity (attributed to RO)	[178]	

Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Findings on Sensory Characteristics	Reference
				Co (% v/v)	Cf (% v/v)		
	Syrah red wine	ns	T = ns P = ns	13.4	11.4–7.9	Decrease in persistence, complexity, number of aromas and increase in balance, harmony, and familiarity. Decrease in familiarity and harmony after 4% v/v reduction	[201]
Va	OD/EP						
	white wine	PTFE hollow fiber (Teflon, Verona, Italy)	Qf = 0.2 Qs = 0.2 T = 20 Time = ns	ns	*	Floral, fruity, and vegetable notes, as well as acidity, saltiness, and bitterness, were not significantly influenced. Decrease in wine body, persistence, and honey note.	[191]
	Falanghina white wine	Liqui-Cel 0.5x1, PP	Qf = 0.07	12.5	9.8–0.3	Decrease in odor,	[140]

Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Findings on Sensory Characteristics	Reference
				Co (%) v/v	Cf (%) v/v		
		hollow fiber	Qs = 0.14 T = 10 Time = 240			sweetness, and body, resulting in unbalanced taste and overall unacceptable, with an unpleasant aftertaste	
Aglianico red wine	Liqui-Cel Extra-flow, PP hollow fiber	Qf = 0.583 Qs = 0.183 T = 20 Time = 283	13.8	11.6–8.8	Decrease in cherry, red fruits, and sweet notes. Increase in flowers notes only within 2% v/v reduction. Increase in grass and cooked notes and increase in astringency within 5% v/v reduction. Increase in bitterness and acid sensations within 3% v/v reduction	[133]	

Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Findings on Sensory Characteristics	Reference
				Co (% v/v)	Cf (% v/v)		
			Qf = ns Qs = ns T = ns Time = 180	12.8	4.9–0.4	Decrease in sweet and solvent aroma series (due to alcohol reduction) which characterize the wine	[180]
	Aglianico red wine	Liqui-Cel Extra-flow					
			Qf = 0.583 Qs = 0.183 T = 20 Time = 283	15.5	13.5–10.8	Decrease in cherry, red fruits, flowers, and grass notes. Increase in acid and astringent sensations	[133]
	Aglianico red wine	Liqui-Cel Extra-flow, PP hollow fiber					
	Montepulciano d'Abruzzo red wine	Liqui-Cel 0.5×1, PP hollow fiber	Recycling mode Qf = 1.5 Qs = 0.5 T = 10 Time = 240	13.2	8.3–2.7	Increase in acidity, a decrease in red fruits and spices notes, astringency, bitterness, and sweetness, resulting in lower acceptability	[139]

Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Findings on Sensory Characteristics	Reference
				Co (% v/v)	Cf (% v/v)		
PV	Cabernet Sauvignon red wine	PDMS JS-WSM-8040 (JiuSi High-Tech, Nanjing, China)	Batch operation T = 45 VP = 0.05	12.5	0.5	High retention of fruit aroma, producing wine with better smell and taste	[192]
SCC	Chardonnay white wine	—	ns	14.9	14.6–12.9	Decrease in overall aroma intensity and hot mouthfeel sensation	[202]
RO-OD/EP	Shiraz red wine	Memstar AA MEM-074 and Liqui-Cel 2.5 × 8 Extra-flow PP hollow fiber	Qf = ns Qs = ns T = ns P = ns Time = ns	16.3	13.3–10.4	Increase in dark fruit, raisin/prune, alcohol, and astringency in all dealcoholized wines with no significant effects. Increase in black pepper note and overall aroma intensity, and decrease in herbaceous note within	[193]

Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Findings on Sensory Characteristics	Reference
				Co (%) v/v	Cf (%) v/v		
				6% v/v reduction off alcohol			
Cabernet Sauvignon red wine A		Spiral wound 4040 and hollow fiber perstractive membrane (VA Filtration, Nuriootpa, Australia)	Qf = ns Qs = ns T = 55 P = 30 Time = 90	17.0	14.5	Increase in dark fruit aroma and decrease of green aroma, dried fruit, and chocolate flavors with no significant difference in the overall intensity. A small decrease in acidity. Small but significant decreases in sweetness and saltiness. Increase in the sensation of astringency	[165]
Cabernet Sauvignon red wine B		Spiral wound 4040 and hollow fiber perstractive	Qf = ns Qs = ns T = 55	15.5	13.3	Decreases in hotness, bitterness, and body (attributed to	[165]

Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Findings on Sensory Characteristics	Reference
				Co (%) v/v	Cf (%) v/v		
	membrane (VA Filtration, Nuriootpa, Australia)	P = 30				lower ethanol level). Decrease in confection and 'chocolate' aromas. Significant decrease in the overall flavor intensity (largely due to the decreased intensity of dark fruit, sweet spice, and chocolate flavors) with no significant effect on the overall intensity	ssure; PP lation; EP sis; PV = 6 and 4% min; Time
Cabernet Sauvignon red wine C	Spiral wound 4040 and hollow fiber perstractive membrane (VA Filtration, Nuriootpa, Australia)	Qf = ns Qs = ns T = 55 P = 30 Time = 90	14.9	13.3	Decrease in hotness (attributed to lower ethanol level). Decrease in confection, dried fruit, and chocolate aromas with	[165]	

Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Findings on Sensory Characteristics	Reference
				Co (%) v/v	Cf (%) v/v		
						no significant difference in the overall intensity. Decrease in the sensation of astringency	
Cabernet Sauvignon red wine D		Spiral wound 4040 and hollow fiber perstractive membrane (VA Filtration, Nuriootpa, Australia)	Qf = ns Qs = ns T = 55 P = 30 Time = 90		14.5 13.2	Decrease in hotness (attributed to lower ethanol level). Increase in red fruit aroma with no significant difference in the overall intensity	[165]
Cabernet Sauvignon red wine E		Spiral wound 4040 and hollow fiber perstractive membrane (VA Filtration, Nuriootpa, Australia)	Qf = ns Qs = ns T = 55 P = 30 Time = 90	16.0	14.2	Decrease in hotness (attributed to lower ethanol level). Decrease in overall flavor intensity with no significant difference in the overall	[165]

Dealcoholization Process	Wine Type	Membrane	Operating Mode/Conditions	Alcohol Reduction		Findings on Sensory Characteristics	Reference
				Co (% v/v)	Cf (% v/v)		
						intensity. Small but significant decreases in sweetness and saltiness	