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To adapt to the trends in wine styles, and the effect of climate change on wine alcohol content, different techniques

have been used at the various stages of winemaking, among which the physical dealcoholization techniques,

particularly membrane separation (nanofiltration, reverse osmosis, evaporative perstraction, and pervaporation)

and thermal distillation (vacuum distillation and spinning cone column), have shown promising results and hence

are being used for commercial production.

dealcoholization  reduced-alcohol wine  alcohol-free wine  non-alcoholic wine

phenolic composition  volatile composition  aroma compounds  sensory quality

1. Introduction

Wine is an alcoholic beverage popularly produced from fermented grape juice. Wines can be classified as red, rose

(pink), or white based on their color, and they can also be classified as table (red, rose, or white), sparkling, or

fortified based on their alcohol level or carbon dioxide content . Table wines are wines that are neither fortified nor

sparkling and are typically served with food . Fortified wines are made by adding alcohol (usually between 16%

and 23%) . Wines can also be classified based on how much carbon dioxide they contain. Those that contain

carbon dioxide (about 10 g/L CO )  are classified as sparkling wines, while those that do not contain carbon

dioxide are classified as “still” wines . The carbon dioxide can be produced naturally during fermentation or added

artificially. Based on alcoholic content, wines can further be classified as alcohol-free (< 0.5% v/v), low-alcohol

(0.5% to 1.2% v/v), reduced-alcohol (1.2% to 5.5% or 6.5% v/v), lower-alcohol (5.5% to 10.5% v/v), and alcoholic

wines (> 10.5% v/v) . In addition, wines are also classified according to their sugar content: dry (maximum of 4

g/L sugar), medium dry (between 4 g/L and 12 g/L sugar), semi-sweet (between 12 g/L and 45 g/L sugar), and

sweet (minimum of 45 g/L sugar) . However, these classifications are not explicit and may vary between most

wine producing countries and the applicable legislations. In the UK, for example, wines with an alcohol content of

1.2% alcohol by volume (ABV) or less are classified as low alcohol wines, while wines with an alcohol content of

less than 0.5% ABV are referred to as non-alcoholic wines. In contrast, China classifies low alcohol wines as wines

with 1.0% to 7.0% ABV and non-alcoholic wines as wines with 0.5% to 1.0% ABV .

From several studies (in vitro and in vivo), there is a positive consent of the beneficial impact of wine consumption

on neurological diseases, cardiovascular disease, osteoporosis, diabetes, and longevity . When

consumed in adequate amounts and together with a meal, wine plays a vital role in mitigating oxidative stress and

vascular endothelial damage induced by a high-fat meal . According to Boban et al. , red wine consumption
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may help prevent heart diseases as well as type two diabetes, allowing consumers to enjoy better health and an

increased lifespan as they age. A Chinese study on alcohol and mortality in middle-aged men discovered a 19%

reduction in deaths with no more than two drinks per day . Furthermore, a study conducted by Buettner and

Skemp  on blue zones revealed adequate wine intake as one of the nine lifestyle habits in populations around

the world that are known for their long lifespan and healthy aging. Despite the benefits associated with wine

consumption, some consumers perceive wine to be harmful to human health because it contains alcohol .

High concentrations of ethanol in wine increase the sensation of hotness and bitterness, while decreasing acidity

and masking the sensitivity of certain essential aroma compounds such as esters, higher alcohols, and

monoterpenes . Furthermore, high alcohol wines are subject to higher import duties and taxes in some

countries . For example, in the United States, wine with 14% alcohol or less is taxed at USD 1.07 per gallon,

while wine with 14.1% to 21% alcohol is taxed at USD 1.57 per gallon . There is a common view all over the

world that the consumption of alcoholic wine should lessen in favor of low or non-alcoholic wines . This is

currently being witnessed globally as there is a growing popularity of low- or non-alcoholic wines and beverages,

particularly in Europe and North America (www.factmr.com/report/4532/non-alcoholic-wine-market, accessed on 1

September 2021). Consumer preferences are shifting with consumers in the non-alcoholic wine market wanting

new product offerings and alternatives. There is also an increasing percentage of the adult population seeking

lower alcohol wines and beverages more frequently, which has boosted non-alcoholic wine sales. This trend has

prompted producers to introduce new non-alcoholic wine products with fruity and floral notes. Additionally, the

global non-alcoholic wine market size is valued at USD 20 billion with a compound annual growth rate (CAGR) of

over 45% in 2018 and is projected to increase at a remarkable CAGR of over 7% during the forecast period (2019–

2027), reaching a value pool of over USD 30 billion . According to another school of thought

(www.factmr.com/report/4532/non-alcoholic-wine-market, accessed on 1 September 2021), the global market will

continue to grow steadily, with a CAGR of 10.4% from 2021 to 2031, up from an 8.8% CAGR from 2016 to 2020.

Therefore, for wine producers to meet consumers’ demands and adapt to the rising non-alcoholic wine market,

they need to produce high-quality alcohol-free or low-alcoholic wines (Figure 1).
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Figure 1. Techniques for alcohol reduction in wines and fermented beverages.

2. Techniques for Wine Alcohol Reduction

A summary of some techniques commonly used for the dealcoholization of wines at the various stages (pre-

fermentation stage, fermentation stage, and post-fermentation stage) of wine production and their extent of ethanol

removal is shown in Table 1.

Table 1. Different techniques to reduce wine alcohol content in the several stages of wine production.

Stage of Wine

Production

Ethanol Removal

Process
Technology

Alcohol

Content

Reduction

References

Pre-

fermentation

Reduction of

fermentable

sugars

Viticultural practices (leaf area

reduction, pre-harvest irrigation,

application of growth regulators;

reduction in photosynthetic

activity)

Up to 2%

v/v
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Stage of Wine

Production

Ethanol Removal

Process
Technology

Alcohol

Content

Reduction

References

Early fruit harvest and blends with

mature harvest

Up to 3%

v/v

Dilution of grape must
Up to 7%

v/v

Filtration of must
Up to 5%

v/v

Addition of enzyme (glucose

oxidase)

Up to 4%

v/v

Fermentation

Reduction of

alcohol

production

Use of Non-Saccharomyces

cerevisiae yeasts

Up to 2%

v/v

Use of modified yeast strains
Up to 3.6%

v/v

Biomass reduction
Up to 4%

v/v

Arrested fermentation
High

reduction

Post-

fermentation

Separation by

membrane
Nanofiltration (NF)

Up to 4%

v/v
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3. Impact of Dealcoholization Techniques on Wine Quality

3.1. Impact on phenolic composition

The phenolic composition of wine is made up of flavonoids and non-flavonoids . Flavonoids include flavones,

flavanols ((+)-catechin and (−)-epicatechin), flavonols (quercetin, myricetin, kaempferol, and rutin), anthocyanins,

and proanthocyanidins while non-flavonoids are mainly resveratrol (3,4,5-trihydroxystilbene), hydroxybenzoic acids

(p-hydroxybenzoic, vanillic, syringic, gallic, gentisic, salicylic, and protocatechuic acids), and hydroxycinnamic

acids (caffeic, coumaric, and ferulic acids) . Regarding wine quality, especially red wine,

phenolic compounds play a vital role by contributing to organoleptic properties such as astringency and color .

Health-wise, phenolic compounds can be effective in the prevention of cardiovascular diseases .

Although changes in alcohol content do not generally affect basic wine parameters such as density, pH, titratable

acidity, and volatile acidity , these changes have been reported to influence wine phenolic compounds 
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Dealcoholization

Process
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Reduction

Reported Effects on Phenolic Composition Reference

Co (%

v/v)

Cf (%

v/v)
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unchanged and do not differ. Slight but
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observed in the percentages of procyanidins,

prodelphinidins, and galloylation during

alcohol reduction. Total anthocyanin

concentrations of partially dealcoholized wines
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of the control wine
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wine
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Increase in total phenols and decrease in total

anthocyanins during ethanol reduction in wine

samples. Color intensity increases during

ethanol removal
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Higher amount of total phenols in

dealcoholized wine samples compared to the

original wine. Color intensity decreased

slightly at the end of dealcoholization
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wine
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The alcohol removal process did not affect the

content of vanillin reactive flavans and total

phenolics. A loss of 49% of total monomeric

anthocyanins was observed after

dealcoholization while total anthocyanins

remained almost unchanged with no

significant differences. Color parameters of

dealcoholized wines were not significantly

different compared to the original wine after

alcohol removal
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Wine Type
Dealcoholization

Process

Alcohol

Reduction

Reported Effects on Phenolic Composition Reference

Co (%

v/v)

Cf (%

v/v)

decreases (loss of orange notes) due to the

increased content of total anthocyanins

Langhe Rosè

wine
OD/EP 13.2 5.0

Higher contents of total anthocyanins and total

flavonoids compared to the original wine.

Color: the intensity increases and the hue

decreases (loss of orange notes) due to the

increased content of total anthocyanins

Verduno

Pelaverga red

wine

OD/EP 14.6 5.0

Higher contents of total anthocyanins and total

flavonoids compared to the original wine.

Color: the intensity increases and the hue

decreases (loss of orange notes) due to the

increased content of total anthocyanins

Falanghina

white wine
OD/EP 12.5

9.8–

0.3

At different alcohol content levels of wines, the

total phenols and flavonoids do not differ

significantly as they remain almost unchanged

during the alcohol removal process

Montepulciano

d’Abruzzo red

wine

OD/EP 13.2
8.3–

5.4

Both total phenols and total anthocyanins

decrease in dealcoholized wines with no

significant differences compared to the original

wine. The color intensity remains almost

unchanged during ethanol removal

Montepulciano

d’Abruzzo red

wine

OD/EP 13.2 8.3–

2.7

Flavonoids and phenolic compounds remain

almost unchanged in all dealcoholized

samples compared to the base wine with no

significant differences. Color intensity

(evaluated by flavonoids and phenolic
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Co = original alcohol content; Cf = final alcohol content; NF = nanofiltration; RO = reverse osmosis; OD = osmotic

distillation; EP = evaporative perstraction; VD = vacuum distillation; SCC = spinning cone column.

The dealcoholization of white, rose, and red wines by SCC distillation at pilot plant scale was reported to cause

minimal damage to phenolic compounds such as flavonols, tartaric esters, stilbenes (specifically trans- and cis-

resveratrol), flavonols (i.e., rutin, quercetin, and myricetin), flavan-3-ols (mainly (+)-catechin and (−)-epicatechin),

anthocyanins (in particular malvidin 3-glucoside), and non-flavonoids (including gallic, caffeic, and p-coumaric

acids) . Additionally, the technique increased the concentrations of these compounds in the wines after

dealcoholization . Phenolic compounds such as polyphenols and anthocyanins were not lost during the

dealcoholization (at 5% v/v ethanol) of Rosé, Pelaverga, and Barbera red wines using a membrane contactor and

VD method . Recently, Liguori et al.  studied the main quality parameters of white wine (cv Falanghina,

12.5% v/v) dealcoholized at different ethanol concentration levels ranging from 9.8% to 0.3% by an osmotic

distillation process. There were no significant differences in flavonoids, total phenols, total acidity, and organic

acids between the wine samples at different alcohol content levels. Similar results were obtained in a red wine

dealcoholized at different alcohol levels . Furthermore, when RO-EP treatment was used in the partial

dealcoholization (i.e., a reduction of 0.5% to 5.0% ABV) of red wine, it resulted in increased phenolics, color

intensity, and organic acids . In contrast, a significant change in the color of red wines dealcoholized by RO

was observed . The increase in phenolic compounds in wine, particularly anthocyanins, after dealcoholization

noted in most of these studies may be due to reduced precipitation of wine tartrate salts , as wine tartrate salts

can absorb polyphenols . It has also been reported that dealcoholization at a low temperature (20 °C) can lead

to higher retention of polyphenols in wine . In addition, the increment can be attributed to the concentration

effect produced by the removal of ethanol from the wine .

3.2. Impact on Volatile Composition

The composition of volatile compounds influences the overall aroma and flavor of wine . Wine

contains over 1000 volatile compounds of various chemical classes (alcohols, esters, fatty acids, aldehydes,

terpenes, ketones, and sulfur compounds), and wine fermentation produces approximately 400 volatile compounds
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1193.
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Vitic. 2009, 60, 450–460.
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Palacio, L.; Prádanos, P.; Hernández, A. Volatile Composition of Verdejo Wines. J. Agric. Food
Chem. 2012, 60, 7050–7063.

67. Mira, H.; Guiomar, A.; Geraldes, V.; De Pinho, M.N. Membrane Processing of Grape Must for
Control of the Alcohol Content in Fermented Beverages. J. Membr. Sci. Res. 2017, 3, 308–312.
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Wine Type
Dealcoholization

Process

Alcohol

Reduction

Reported Effects on Phenolic Composition Reference

Co (%

v/v)

Cf (%

v/v)

compounds) decrease slightly in all

dealcoholized samples

Langhe Rosè

wine
VD 13.2 5.0

Higher contents of total anthocyanins and total

flavonoids compared to the original wine.

Color the intensity increases and the hue

decreases (loss of orange notes) due to the

increased content of total anthocyanins

Barbera red

wine
VD 15.2 5.0

Higher contents of total anthocyanins and total

flavonoids compared to the original wine.

Color: the intensity increases and the hue

decreases (loss of orange notes) due to the

increased content of total anthocyanins

Verduno

Pelaverga red

wine

VD 14.6 5.0

Higher contents of total anthocyanins and total

flavonoids compared to the original wine.

Color the intensity increases and the hue

decreases (loss of orange notes) due to the

increased content of total anthocyanins

Red wine SCC 14.0 < 0.3

Increase in phenolic compounds, total

phenolic, flavonol, tartaric ester, and

anthocyanin contents by approximately 24%.

Higher content of resveratrol than the original

wine

Rose wine SCC 14.0 < 0.3 Increase in phenolic compounds, total

phenolic, flavonol, tartaric ester, and

anthocyanin contents by approximately 24%.
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. During dealcoholization, the removal of alcohol from wine is usually accompanied by the removal of water and

some volatile compounds as well . Table 3 summarizes some findings regarding the volatile composition of

wines during the dealcoholization process. In the case of membrane contactor techniques such as RO, NF, PV,

and OD that use a membrane for ethanol removal, a greater pressure difference across the membrane than the

osmotic pressure difference causes ethanol and water from the wine to pass through the membrane .

Table 3. Some reported changes in wine volatile compounds using different dealcoholization processes.
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Wine Type
Dealcoholization

Process

Alcohol

Reduction

Reported Effects on Phenolic Composition Reference

Co (%

v/v)

Cf (%

v/v)

Higher content of resveratrol than the original

wine

White wine SCC 14.0 < 0.3
Increase in phenolic compounds content by

approximately 24%

Montepulciano

d’Abruzzo red

wine (cv.)

RO–OD/EP 13.2
7.1–

5.5

Total phenols increase while total

anthocyanins decrease in the dealcoholized

wine samples. Color intensity increases during

ethanol removal

Cabernet

Sauvignon red

wine

RO–OD/EP 14.1 12.5

Significantly increase in color intensity due to

increased content of anthocyanins during

alcohol reduction compared to the base wine

Shiraz red wine RO–OD/EP 15.2 12.6

Increase in color intensity due to increased

content of anthocyanins during alcohol

reduction compared to the base wine
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Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Volatile Composition

Sampling and

Analytical Method

Reference

Co (%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

NF

White model

wine
TORAY–UB70

Batch

retentate–

recycling

mode

T = 15

P = 10

12.0 8.4

Diethyl

succinate

2–phenyl–

ethanol

cis–3–hexenol

Isovaleric acid

2.4

2.9

12.6

11.7

HS/SPME–

GC/MS

Red Wine

Polyamide,

NF9, Alfa

Laval

T = 30

P = 16

12.0 9.1
Total volatile

aroma**
30.0 GC–FID

RO Model wine Osmonics–SE Batch

retentate–

recycling

mode

T = 15

P = 17–29

12.0 8.4 Diethyl

succinate

2–phenyl–

ethanol

cis–3–hexenol

0.6–

1.6

2.5–

3.5

7.8–

11

HS/SPME–

GC/MS
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Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Volatile Composition

Sampling and

Analytical Method

Reference

Co (%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

Isovaleric acid 11.9–

18.1

Red Wine

Cellulose

acetate,

CA995PE

T = 30◦C

P = 16

12.0 8.4 Total aroma** 90.0 GC–FID

Montepulciano

d’Abruzzo red

wine

RO membrane

(100 DA)

T = 10

P = ns

Time = 40

13.2 9.0

Alcohols

Acids

Esters

Phenols

Lactones

30.0

22.0

8.0

13.0

14.0

SPME–

GC/MS

OD/EP

Model wine

Polyvinylidene

fluoride (PVDF)

Memcor

Qf = 0.053

Qs = 0.093

T = 30

Time = 60

13.0 8.1

Isoamyl

alcohol

Ethyl acetate

44.0

70.0

GC–FID

Falanghina

white wine

Liqui–Cel 0.5 ×

1, PP hollow

fiber

Qf = 0.07

Qs = 0.14

T = 10

12.5 9.8–

0.3

Higher

alcohols

Acids

Esters

49.5–

98.9

60.5–

98.7

LE–GC/MS,

LE–GC/FID
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Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Volatile Composition

Sampling and

Analytical Method

Reference

Co (%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

Time = 240 Ketones

lactones

71.5–

99.0

67.1–

99.9

73.6–

98.2

Xarelo white

wine

Liqui–Cel

ExtraFlow

Qf = 10

Qs = 10

T = room

temperature

Time = 20

11.5 10.1

Isoamyl

acetate

Ethyl

hexanoate

Ethyl

octanoate

Ethyl

decanoate

27.0

37.0

28.0

24.0

SBSE–GC/MS

Soave white

wine
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Acids
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Qs = 0.183
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Alcohols
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Acids

Terpenes
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Benzaldehyde
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Butyrolactone
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33.8–

50.6

11–

18.5

3.6–

14.5

nf

12.9

Unc

SPE–GC/MS

Aglianico red

wine

Liqui–Cel

0.5×1, PP

hollow fiber

Qf = 0.07

Qs = 0.14

T = 20

Time = 255

13.0 6.5–

0.2

Alcohols

Acids

Esters

Sulfur

compounds

Phenols

Ketones and

lactones

Aldehydes

57.9–

99.9

23.6–

78.9

12.8–

89.9

2.1–

78.7

66.7–

100

LE–GC/MS,

LE–GC/FID

[133]

[145]



Techniques for Dealcoholization of Wines | Encyclopedia.pub

https://encyclopedia.pub/entry/15536 16/30

133. Lisanti, M.T.; Gambuti, A.; Genovese, A.; Piombino, P.; Moio, L. Partial Dealcoholization of Red
Wines by Membrane Contactor Technique: Effect on Sensory Characteristics and Volatile
Composition. Food Bioprocess Technol. 2013, 6, 2289–2305.

134. Bui, K.; Dick, R.; Moulin, G.; Galzy, P. A Reverse Osmosis for the Production of Low Ethanol
Content Wine. Am. J. Enol. Vitic. 1986, 37, 297–300.

135. Lopez, M.; Alvarez, S.; Riera, F.A.; Alvarez, R.; Julia, C. Production of Low Alcohol Content Apple
Cider by Reverse Osmosis. Ind. Eng. Chem. Res. 2002, 41, 6600–6606.

136. Massot, A.; Mietton-peuchot, M.; Peuchot, C.; Milisic, V. Nanofiltration and Reverse Osmosis in
Winemaking. Desalination 2008, 231, 283–289.

137. Pilipovik, M.V.; Riverol, C. Assessing Dealcoholization Systems Based on Reverse Osmosis. J.
Food Eng. 2005, 69, 437–441.

138. Russo, P.; Liguori, L.; Corona, O.; Albanese, D.; DiMatteo, M.; Cinquanta, L. Combined
Membrane Process for Dealcoholization of Wines: Osmotic Distillation and Reverse Osmosis.
Chem. Eng. Trans. 2019, 75, 7–12.

139. Corona, O.; Liguori, L.; Albanese, D.; Di Matteo, M.; Cinquanta, L.; Russo, P. Quality and Volatile
Compounds in Red Wine at Different Degrees of Dealcoholization by Membrane Process. Eur.
Food Res. Technol. 2019, 245, 2601–2611.

140. Liguori, L.; Albanese, D.; Crescitelli, A.; Di Matteo, M.; Russo, P. Impact of Dealcoholization on
Quality Properties in White Wine at Various Alcohol Content Levels. J. Food Sci. Technol. 2019,
56, 3707–3720.

141. Diban, N.; Athes, V.; Bes, M.; Souchon, I. Ethanol and Aroma Compounds Transfer Study for
Partial Dealcoholization of Wine Using Membrane Contactor. J. Memb. Sci. 2008, 311, 136–146.

142. Diban, N.; Arruti, A.; Barceló, A.; Puxeu, M.; Urtiaga, A.; Ortiz, I. Membrane Dealcoholization of
Different Wine Varieties Reducing Aroma Losses. Modeling and Experimental Validation. Innov.
Food Sci. Emerg. Technol. 2013, 20, 259–268.

143. Ferrarini, R.; Maria, G.; Camin, F.; Bandini, S.; Gostoli, C. Variation of Oxygen Isotopic Ratio
during Wine Dealcoholization by Membrane Contactors: Experiments and Modelling. J. Memb.
Sci. 2016, 498, 385–394.

144. Gambuti, A.; Rinaldi, A.; Lisanti, M.T.; Pessina, R.; Moio, L. Partial Dealcoholisation of Red Wines
by Membrane Contactor Technique: Influence on Colour, Phenolic Compounds and Saliva
Precipitation Index. Eur. Food Res. Technol. 2011, 233, 647–655.

145. Liguori, L.; Russo, P.; Albanese, D.; Di Matteo, M. Evolution of Quality Parameters during Red
Wine Dealcoholization by Osmotic Distillation. Food Chem. 2013, 140, 68–75.

Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Volatile Composition

Sampling and

Analytical Method

Reference

Co (%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

23.6–

97.9
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Qs = 0.5

T = 10

Time = 240

Esters

Lactones

Phenols

Others:

Benzaldehyde

α–Terpineol

18.0–

23.0

64.0–

85.0

11.0–

37.0

11.0–

37.0

2.0–

26.0
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Montepulciano

d’Abruzzo red

wine
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Acids
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Co = original alcohol content; Cf = final alcohol content; T = temperature; P = pressure; VP = vacuum pressure; PP

= polypropylene; ns = not specified; Verdicchio white wine 1 = sample 1 of 3; Cabernet Sauvignon red wine A =

sample 1 of 5; OD = osmotic distillation; EP = evaporative perstraction; SCC = spinning cone column; NF =

nanofiltration; RO = reverse osmosis; PV = pervaporation; PDMS = polydimethylsiloxane; unc = unchanged; nf =

not found; *ethanol content removal between 2% and 4% v/v; **no values of the individual volatile aroma

compound losses were provided; SPE = solid phase extraction; GC = gas chromatography; MS = mass

spectrometry; LE = liquid extraction; FID = flame ionization detector; SBSE = stir bar sorptive extraction; HS =

headspace; SPME = solid phase micro extraction; – means not applicable. Units: Concentration = (%v/v); Vacuum

pressure/Pressure = bar; Rejection = %; T = °C; Flowrate = L/min; Time = min.

Several studies have reported on the use of membrane techniques in wine dealcoholization and their subsequent

effect on the dealcoholized wine volatile compositions . A low alcohol content

apple cider was produced by RO with a polyamide membrane AFC99 in both batch and diafiltration configurations

. The process was operated at 15 °C and 45 bar with a feed flow of 200 L h . During the batch configuration

process, 50% of ethanol was removed with an estimated loss of 77% of total higher alcohols, 20% of total

aldehydes, 25% of total acids, and 25% of total esters. In the diafiltration configuration, estimated losses of 96%
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Stabilization of Wines. Part I. White Wines. Am. J. Enol. Vitic. 1999, 50, 391–397.

182. Sánchez-Palomo, E.; Delgado, J.A.; Ferrer, M.A.; Viñas, M.A.G. The Aroma of La Mancha Chelva
Wines: Chemical and Sensory Characterization. Food Res. Int. 2019, 119, 135–142.

183. Duan, W.-P.; Zhu, B.-Q.; Song, R.-R.; Zhang, B.; Lan, Y.-B.; Zhu, X.; Duan, C.-Q.; Han, S.-Y.
Volatile Composition and Aromatic Attributes of Wine Made with Vitisvinifera l.Cv Cabernet

Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Volatile Composition

Sampling and

Analytical Method

Reference

Co (%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

7.0–

25.0

Langhe Rosè

wine

Polypropylene

hollow fibers

(JU.CLA.S.

LTD, Verona,

Italy)

Qf = 1.6

Qs = 0.8

T = 10

Time = 360

13.2 5.0

Alcohols

Acids

Esters

60.4

30.9

47.8

SPE–GC/FID

PV

Tokaji

Hárslevelű

white wine

PERVAP.Sulzer

1060 PDMS

‘‘Carrier gas

mode’’ under

atmospheric

pressure

T = 40–70

13.1 0.1
Total volatile

aroma**
70.0

Distillation/LE–

GC/MS

Cabernet

Sauvignon red

wine

PDMS JS–

WSM–8040

(JiuSi High–

Tech, Nanjing,

China)

Batch

operation

T = 45

VP = 0.05

12.5 0.5

Alcohols

Acids

Esters

19.7–

39.5

12.7–

28.2

48.0–

99.9

GC/MS

VD Barbera red

wine

– T = 15 15.2 5.0 Alcohols

Acids

50.4

13.7

SPE–GC/FID

[155]

[147]

[192]

[155]

[147][133][139][140][130][135][138][145][155][190]

[135] −1
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total higher alcohols, 43% total aldehydes, 18.5% total acids, and 28% total esters accompanied the removal of

75% ethanol. However, losses in these volatile compounds were deemed insignificant in both configurations .

Takács et al.  used PV in the total dealcoholization of a Tokaji Hárslevelű wine (13.11% v/v), resulting in a 70%

loss of the total aroma compounds, but the loss of individual aroma compounds was not reported. When Sun et al.

 used PV technology to reduce the alcohol content of a Cabernet Sauvignon red wine from 12.5% to 0.5%, they

discovered losses of volatile compounds, specifically alcohols (40%), acids (28%), and esters (99%). After

dealcoholization with a polyvinylidene fluoride membrane, Varavuth et al.  found losses of 47% to 70% and

23% to 44% of ethyl acetate and isoamyl alcohol, respectively, in a model wine solution. Diban et al.  used the

same polyvinylidene fluoride membrane to measure the losses of eight volatile compounds in wine and wine model

solution after a 2% v/v ethanol reduction, but only losses were observed in model solution after a 5% v/v ethanol

reduction. Furthermore, Belisario-Sánchez et al.  found that after dealcoholization by SCC, the total volatile

aroma compounds of Tempranillo red wine, Cabernet Sauvignon rose wine, and Chardonnay white wine were lost

by approximately 18%, 4%, and 9%, respectively.

During dealcoholization, volatile compounds are lost in the same way as ethanol. As a result, their original contents

are lost during dealcoholization due to vaporization and diffusion . In addition, some losses of 2% to 3%

have been attributed to their adsorption onto the membrane . This is due to their high affinity for the membrane

and high volatility, which allows them to pass through the membrane more easily. Through a non-covalent

interaction between the polyphenols and the aromatic ring of aromatic compounds, the non-volatile matrix of wine,

particularly polyphenols, can also aid in the stability and retention of volatile compounds . This best explains

why a 50% reduction in the ethanol content of a 13% v/v Aglianico wine by a membrane contactor technique did

not affect the amount of 2-phenylethanol in the dealcoholized wine . However, when higher ethanol

concentrations were removed, a drastic decrease in the 2-phenylethanol concentration was observed, which was

attributed to weaker ?–? stacking caused by the decrease in ethanol content (7% v/v) of the wine.

The operating conditions used during the dealcoholization process can also have an impact on the concentrations

of wine volatile compounds. A change in some operating conditions of an OD process, such as lowering the

temperature from 20 °C to 10 °C and changing the positions of the feed and stripping streams from a previous

study , helped to decrease the loss of volatile aroma compounds by about 2.8% during the dealcoholization of

a 12.5% v/v white wine . From the findings, it is evident that the physical technologies used in the

dealcoholization of wines can result in significant losses of volatile compounds due to the reduction in alcohol

levels. However, the significance and extent of the changes can also depend on the operating conditions applied,

the type of membrane used, and the non-volatile matrix of the wine.

3.3. Impact on Sensory Characteristics

Ethanol is the most abundant of the volatile compounds in wine and its concentration can influence the perception

of wine aroma and flavor as well as several mouthfeel and taste sensations . Higher ethanol

concentrations in wine typically enhance sensitivity to body, bitterness, and hotness, whereas lower concentrations

can reduce the perception to aroma, flavor, acidity, and astringency . Some studies have been

Sauvignon Grapes in the Xinjiang Region of China: Effect of Different Commercial Yeasts. Int. J.
Food Prop. 2018, 21, 1423–1441.

184. Cadot, Y.; Caillé, S.; Samson, A.; Barbeau, G.; Cheynier, V. Analytica Chimica Acta Sensory
Dimension of Wine Typicality Related to a Terroir by Quantitative Descriptive Analysis, Just About
Right Analysis and Typicality Assessment. Anal. Chim. Acta 2010, 660, 53–62.

185. Maitre, I.; Symoneaux, R.; Jourjon, F.; Mehinagic, E. Sensory Typicality of Wines: How Scientists
Have Recently Dealt with This Subject. Food Qual. Prefer. 2010, 21, 726–731.

186. Laborde, B.; Moine-Ledoux, V.; Richard, T.; Saucier, C.; Dubourdieu, D.; Monti, J.P. PVPP-
Polyphenol Complexes: A Molecular Approach. J. Agric. Food Chem. 2006, 54, 4383–4389.

187. Flanzy, C. Enologia Fundamentos Cientificos y Tecnológicos, AMV ed.; Mundi-Prensa: Madrid,
Spain, 2003.

188. Longo, R.; Blackman, J.W.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. Changes in Volatile
Composition and Sensory Attributes of Wines during Alcohol Content Reduction. J. Sci. Food
Agric. 2017, 97, 8–16.

189. Catarino, M.; Mendes, A. Dealcoholizing Wine by Membrane Separation Processes. Innov. Food
Sci. Emerg. Technol. 2011, 12, 330–337.

190. Varavuth, S.; Jiraratananon, R.; Atchariyawut, S. Experimental Study on Dealcoholization of Wine
by Osmotic Distillation Process. Sep. Purif. Technol. 2009, 66, 313–321.

191. Fedrizzi, B.; Nicolis, E.; Camin, F.; Bocca, E.; Carbognin, C.; Scholz, M.; Barbieri, P.; Finato, F.;
Ferrarini, R. Stable Isotope Ratios and Aroma Profile Changes Induced Due to Innovative Wine
Dealcoholisation Approaches. Food Bioprocess Technol. 2014, 7, 62–70.

192. Sun, X.; Dang, G.; Ding, X.; Shen, C.; Liu, G.; Zuo, C.; Chen, X.; Xing, W.; Jin, W. Production of
Alcohol-Free Wine and Grape Spirit by Pervaporation Membrane Technology. Food Bioprod.
Process. 2020, 123, 262–273.

193. Jordão, A.; Vilela, A.; Cosme, F. From Sugar of Grape to Alcohol of Wine: Sensorial Impact of
Alcohol in Wine. Beverages 2015, 1, 292–310.

194. Nurgel, C.; Pickering, G. Contribution of Glycerol, Ethanol and Sugar to the Perception of
Viscosity and Density Elicited by Model White Wines. J. Texture Stud. 2005, 36, 303–323.

195. Fontoin, H.; Saucier, C.; Teissedre, P.L.; Glories, Y. Effect of PH, Ethanol and Acidity on
Astringency and Bitterness of Grape Seed Tannin Oligomers in Model Wine Solution. Food Qual.
Prefer. 2008, 19, 286–291.

196. Goldner, M.C.; Zamora, M.C.; Lira, P.D.L.; Gianninoto, H.; Bandoni, A. Effect of Ethanol Level in
the Perception of Aroma Attributes and the Detection of Volatile Compounds in Red Wine. J.
Sens. Stud. 2009, 24, 243–257.

Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Volatile Composition

Sampling and

Analytical Method

Reference

Co (%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

Esters 19.8

Verduno

Pelaverga red

wine

– T = 15 14.6 5.0

Alcohols

Acids

Esters

53.6

2.3

19.5

SPE–GC/FID

Langhe Rosè

wine
– T = 15 13.2 5.0

Alcohols

Acids

Esters

51.4

2.5

22.9

SPE–GC/FID

SCC

White wine –

T = 25

VP = 0.08

Time = 60

10.6 0.3

Aliphatic

alcohols

Aromatic

alcohols

Acids

Esters

Ketones

98.0

3.0

20.0

53.0

71.0

LE–GC/FID

Chardonnay

white wine

– T = 30

VP = 0.04

Time = 60

ns ns Total aroma** 1.0–

9.0

HS/SPME–

GC/MS

[155]

[155]

[160]

[158]

[135]

[147]

[192]

[190]

[141]

[158]

[133][190]

[141]

[133]

[145]

[145]

[140]

[141][177][194][195]

[19][20][196][197][198]
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conducted to investigate the sensory quality of wines or wine model solutions during ethanol removal 

. The sensory profile of wine after partial or total dealcoholization is primarily determined by

the amount of alcohol remaining in the dealcoholized wine . Table 4 summarizes the key findings

from some of these studies on the sensory changes caused by dealcoholization.

Table 4. Summary of the main results of some studies on the sensory changes caused by the removal of ethanol

from wine by various dealcoholization processes.

197. Fischer, U.; Noble, A.C. The Effect of Ethanol, Catechin Concentration, and PH on Sourness and
Bitterness of Wine. Am. J. Enol. Vitic. 1994, 45, 6–10.

198. Coulter, A.; Henschke, P.A.; Simos, C.A.; Pretorius, I. When the Heat Is on, Yeast Fermentation
Runs out of Puff. Aust. New Zeal. Wine Ind. J. 2008, 23, 26–30.

199. King, E.S.; Dunn, R.L.; Heymann, H. The Influence of Alcohol on the Sensory Perception of Red
Wines. Food Qual. Prefer. 2013, 28, 235–243.

200. Meillon, S.; Urbano, C.; Guillot, G.; Schlich, P. Acceptability of Partially Dealcoholized Wines—
Measuring the Impact of Sensory and Information Cues on Overall Liking in Real-Life Settings.
Food Qual. Prefer. 2010, 21, 763–773.

201. Meillon, S.; Viala, D.; Medel, M.; Urbano, C.; Guillot, G.; Schlich, P. Impact of Partial Alcohol
Reduction in Syrah Wine on Perceived Complexity and Temporality of Sensations and Link with
Preference. Food Qual. Prefer. 2010, 21, 732–740.

202. King, E.S.; Heymann, H. The Effect of Reduced Alcohol on the Sensory Profiles and Consumer
Preferences of White Wine. J. Sens. Stud. 2014, 29, 33–42.
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(%)

 

Tempranillo

red wine
–

T = 30

VP = 0.04

Time = 60

ns ns Total aroma**
3.0–

18.0

HS/SPME–

GC/MS

Cabernet

Sauvignon

rose wine

–

T = 30

VP = 0.04

Time = 60

ns ns Total aroma**
1.0–

4.0

HS/SPME–

GC/MS

RO-OD/EP

Shiraz red

wine

Memstar AA

MEM–074 and

Liqui–Cel

2.5×8 Extra–

flow

PP hollow fiber

Qf = ns

Qs = ns

T = ns

P = ns

Time = ns

16.3
13.3–

10.4

Alcohols

Esters

Monoterpenes

C13–

Norisoprenoids

Lactones

Others:

Dimethyl

sulfide

14.9–

38.9

29.8–

49.5

9.2–

20.8

9.4–

14.5

17.1–

21.4

52.6–

71.9

HS–SPME–

GC/MS

[158]

[158]

[193]

[147][130][141]

[144][159][160][178][190][180]

[157][191][199][200]
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Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction Findings on

Sensory

Characteristics

Reference

Co (%

v/v)

Cf (%

v/v)

NF Red Wine

Polyamide,

NF97,

NF99 HF

Alfa

Laval

T = 30

P = 16

12.0 9.1

Increase in

astringency

and

unbalanced

aroma and

taste due to

alcohol

reduction

RO Syrah red wine ns T = ns

P = ns

12.7 11.1–

9.6

Decrease in

wine length in

the mouth and

increase in

red fruits and

then woody

and

blackcurrant

perceptions

(using TDS

and attributed

to alcohol

reduction).

Decrease in

heat and

sweetness

[189]

[178]
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Montepulciano

d’Abruzzo red

wine

RO membrane

(100 DA) and

Liqui–cel mini

module 1.7×5.5

Membrane

Recycling

mode

Qf = 1.5

Qs = 0.5

T = 10

P = ns

Time = 120

13.2
7.1–

5.5

Alcohols

Acids

Esters

Phenols

Lactones

17.0–

27.0

19.0–

24.0

15.0–

22.0

16.0–

18.0

unc–

14.0

SPME–

GC/MS

Barossa

Valley Shiraz

– Cabernet

Sauvignon red

wine

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

14.1 12.5

Alcohols

Acids

Esters

15.5

10.0

5.1

SPME–

GC/MS

McLaren Vale

Cabernet

Sauvignon red

wine

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Qf = ns

Qs = ns

T = 55

P = 30

17.1 14.5 Alcohols

Acids

Esters

13.6

6.1

18.8

SPME–

GC/MS

[138]

[164]

[164]

Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction Findings on

Sensory

Characteristics

Reference

Co (%

v/v)

Cf (%

v/v)

intensity

(attributed to

alcohol

reduction) and

red fruit

intensity

(attributed to

RO)

Merlot red

wine
ns

T = ns

P = ns

13.4
11.8–

10.2

Decrease om

wine length in

the mouth and

increase in

astringent and

then of fruity

perceptions

(using TDS

and attributed

to alcohol

reduction).

Decrease in

heat and

texture

intensity

(attributed to

alcohol

reduction) and

increase in

acid intensity

(attributed to

RO)

[178]
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Volatile

Compounds
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Average
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(%)

 

Nuriootpa,

Australia)

Time = 90

Adelaide Hills

Shiraz red

wine

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

14.9 14.2

Alcohols

Acids

Esters

7.0

0.4

8.6

SPME–

GC/MS

Barossa

Valley Shiraz

red wine

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

15.2 12.6

Alcohols

Acids

Esters

11.0

5.6

21.2

SPME–

GC/MS

McLaren Vale

Shiraz red

wine

Spiral wound

4040 and

hollow fiber

perstractive

membrane

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

14.7 12.3 Alcohols

Acids

Esters

7.1

2.5

9.7

SPME–

GC/MS

[164]

[164]

[164]

Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction Findings on

Sensory

Characteristics

Reference

Co (%

v/v)

Cf (%

v/v)

Syrah red wine ns

T = ns

P = ns

13.4
11.4–

7.9

Decrease in

persistence,

complexity,

number of

aromas and

increase in

balance,

harmony, and

familiarity.

Decrease in

familiarity and

harmony after

4% v/v

reduction

OD/EP

white wine

PTFE

hollow fiber

(Teflon,

Verona,

Italy)

Qf = 0.2

Qs = 0.2

T = 20

Time = ns

ns *

Floral, fruity,

and vegetable

notes, as well

as acidity,

saltiness, and

bitterness,

were not

significantly

influenced.

Decrease in

wine body,

persistence,

and honey

note.

Falanghina

white wine

Liqui-Cel

0.5x1, PP

Qf = 0.07 12.5 9.8–

0.3

Decrease in

odor,

[201]

[191]

[140]
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Co (%
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Cf (%

v/v)

Volatile

Compounds

Estimated

Average
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(%)

 

Cabernet

Sauvignon red

wine A

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

17.0 14.5

Alcohols

Acids

Esters

8.2

15.9

17.4

 

Cabernet

Sauvignon red

wine B

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

15.5 13.3

Alcohols

Acids

3.8

12.0
 

Cabernet

Sauvignon red

wine C

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

14.9 13.3 Alcohols 16.4
 

[165]

[165]

[165]
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Operating

Mode/Conditions
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Reduction Findings on

Sensory

Characteristics

Reference

Co (%

v/v)

Cf (%

v/v)

hollow fiber Qs = 0.14

T = 10

Time = 240

sweetness,

and body,

resulting in

unbalanced

taste and

overall

unacceptable,

with an

unpleasant

aftertaste

Aglianico red

wine

Liqui-Cel

Extra-flow,

PP hollow

fiber

Qf = 0.583

Qs = 0.183

T = 20

Time = 283

13.8
11.6–

8.8

Decrease in

cherry, red

fruits, and

sweet notes.

Increase in

flowers notes

only within 2%

v/v reduction.

Increase in

grass and

cooked notes

and increase

in astringency

within 5% v/v

reduction.

Increase in

bitterness and

acid

sensations

within 3% v/v

reduction

[133]
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Wine Type Membrane

Operating

Mode/Conditions
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Reduction
Volatile Composition
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Analytical Method

Reference

Co (%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average
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(%)

 

Cabernet

Sauvignon red

wine D

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

14.5 13.2

Alcohols

Acids

Esters

7.1

4.7

76.5

 
[165]

Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction Findings on

Sensory

Characteristics

Reference

Co (%

v/v)

Cf (%

v/v)

Aglianico red

wine

Liqui-Cel

Extra-flow

Qf = ns

Qs = ns

T = ns

Time = 180

12.8
4.9–

0.4

Decrease in

sweet and

solvent aroma

series (due to

alcohol

reduction)

which

characterize

the wine

Aglianico red

wine

Liqui-Cel

Extra-flow,

PP hollow

fiber

Qf = 0.583

Qs = 0.183

T = 20

Time = 283

15.5
13.5–

10.8

Decrease in

cherry, red

fruits, flowers,

and grass

notes.

Increase in

acid and

astringent

sensations

  Montepulciano

d’Abruzzo red

wine

Liqui-Cel

0.5×1, PP

hollow fiber

Recycling

mode

Qf = 1.5

Qs = 0.5

T = 10

Time = 240

13.2 8.3–

2.7

Increase in

acidity, a

decrease in

red fruits and

spices notes,

astringency,

bitterness,

and

sweetness,

resulting in

lower

acceptability

[180]

[133]

[139]
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Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction Findings on

Sensory

Characteristics

Reference

Co (%

v/v)

Cf (%

v/v)

PV

Cabernet

Sauvignon red

wine

PDMS JS-

WSM-8040

(JiuSi High-

Tech,

Nanjing,

China)

Batch

operation

T = 45

VP = 0.05

12.5 0.5

High retention

of fruit aroma,

producing

wine with

better smell

and taste

SCC
Chardonnay

white wine
– ns 14.9

14.6–

12.9

Decrease in

overall aroma

intensity and

hot mouthfeel

sensation

RO-OD/EP Shiraz red

wine

Memstar

AA MEM-

074 and

Liqui-Cel

2.5 × 8

Extra-flow

PP hollow

fiber

Qf = ns

Qs = ns

T = ns

P = ns

Time = ns

16.3 13.3–

10.4

Increase in

dark fruit,

raisin/prune,

alcohol, and

astringency in

all

dealcoholized

wines with no

significant

effects.

Increase in

black pepper

note and

overall aroma

intensity, and

decrease in

herbaceous

note within

[192]

[202]

[193]
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Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction Findings on

Sensory

Characteristics

Reference

Co (%

v/v)

Cf (%

v/v)

6% v/v

reduction off

alcohol

Cabernet

Sauvignon red

wine A

Spiral

wound

4040 and

hollow fiber

perstractive

membrane

(VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

17.0 14.5

Increase in

dark fruit

aroma and

decrease of

green aroma,

dried fruit, and

chocolate

flavors with no

significant

difference in

the overall

intensity. A

small

decrease in

acidity. Small

but significant

decreases in

sweetness

and saltiness.

Increase in

the sensation

of astringency

Cabernet

Sauvignon red

wine B

Spiral

wound

4040 and

hollow fiber

perstractive

Qf = ns

Qs = ns

T = 55

15.5 13.3 Decreases in

hotness,

bitterness,

and body

(attributed to

[165]

[165]
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Co = original alcohol content; Cf = final alcohol content; T = temperature; P = pressure; VP = vacuum pressure; PP

= polypropylene; ns = not specified; Cabernet Sauvignon red wine A = sample 1 of 5; OD = osmotic distillation; EP

= evaporative perstraction; SCC = spinning cone column; NF = nanofiltration; RO = reverse osmosis; PV =

pervaporation; PDMS = polydimethylsiloxane; unc = unchanged; *ethanol content removal between 2% and 4%

v/v. Units: Concentration = (%v/v); Vacuum pressure/Pressure = bar; Rejection = %; T = °C; Flowrate = L/min; Time

= min.

Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction Findings on

Sensory

Characteristics

Reference

Co (%

v/v)

Cf (%

v/v)

membrane

(VA

Filtration,

Nuriootpa,

Australia)

P = 30

Time = 90

lower ethanol

level).

Decrease in

confection

and

‘chocolate’

aromas.

Significant

decrease in

the overall

flavor intensity

(largely due to

the decreased

intensity of

dark fruit,

sweet spice,

and chocolate

flavors) with

no significant

effect on the

overall

intensity

Cabernet

Sauvignon red

wine C

Spiral

wound

4040 and

hollow fiber

perstractive

membrane

(VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

14.9 13.3 Decrease in

hotness

(attributed to

lower ethanol

level).

Decrease in

confection,

dried fruit, and

chocolate

aromas with

[165]
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Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction Findings on

Sensory

Characteristics

Reference

Co (%

v/v)

Cf (%

v/v)

no significant

difference in

the overall

intensity.

Decrease in

the sensation

of astringency

Cabernet

Sauvignon red

wine D

Spiral

wound

4040 and

hollow fiber

perstractive

membrane

(VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

14.5 13.2

Decrease in

hotness

(attributed to

lower ethanol

level).

Increase in

red fruit

aroma with no

significant

difference in

the overall

intensity

Cabernet

Sauvignon red

wine E

Spiral

wound

4040 and

hollow fiber

perstractive

membrane

(VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

16.0 14.2 Decrease in

hotness

(attributed to

lower ethanol

level).

Decrease in

overall flavor

intensity with

no significant

difference in

the overall

[165]

[165]
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Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction Findings on

Sensory

Characteristics

Reference

Co (%

v/v)

Cf (%

v/v)

intensity.

Small but

significant

decreases in

sweetness

and saltiness


