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Classical electrodynamics was introduced by James Clear Maxwell nearly 150 years ago and it is a subject that had been

thoroughly explored over these years. Notwithstanding this long term scrutiny of this subject, there are hidden features in

classical electrodynamics that actually heralds the emergence of Quantum electrodynamics in the future. Such examples

can be found when analyzing the electromagnetic radiation generated by antennas working in both frequency and time

domain and in the case of transition radiation generated by decelerating electrons. Here we discuss one such case.

Consider the radiation generated by an antenna working in frequency domain. One can show that the energy dissipated

as radiation within half a period of oscillation, say U, satisfies the inequality U ≥ hf →q ≥ e where q  is the magnitude of

the oscillating charge in the antenna, e is the elementary charge, f is the frequency of oscillation and h is the Planck

constant. This result is derived while adhering strictly to the principles of classical electrodynamics alone. Combining this

result with the concept of photons burrowed from quantum mechanics, one can derive an expression for the elementary

charge as a function of other natural constants and the energy density of vacuum. The expression predicts the value of

elementary charge to an accuracy higher than about 0.1%.
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1. Introduction

Classical electrodynamics is a classical field theory. The quantum version of this theory is the quantum electrodynamics.

However, recent studies based on classical electromagnetic theory shows that there are several indications in this

classical field theory that herald the future emergence of quantum electrodynamics. One can find such cases while

analyzing the radiation generated by both frequency and time domain antennas and the transition radiation generated by

decelerating electrons . In this note we will concentrate only on the radiation from frequency domain antennas excited

by oscillating currents. One can find the references pertinent to time domain and transition radiation also in reference [1].

2. Theory and results

As the radiating system consider a lossless transmitting antenna working in frequency domain located over a perfectly

conducting ground plane. The antenna together with the ground plane acts as a center fed transmitting dipole. The length

of the antenna is L, the radius of the antenna is r, the frequency of oscillation of the current or charge in the antenna is f ,
w is the corresponding wavelength and T is the period of oscillation. The power dissipated by this antenna, excited by an

oscillating current, takes place in energy bursts with duration equal to half the period, i.e. T/2.  This paper is concerned

with the energy dissipated within such a single burst. The material to be given below is adapted from references [1] and

[2].

As the value of L/w increases, the energy dissipated by this antenna over a period of T/2 oscillates around a median

value. This median energy denoted by U  is given by

 

                           

In Equation (1), g is Euler’s constant, which is equal to 0.5772, p is the permittivity of free space, and q is the magnitude

of the oscillating charge. For a given charge q , the median energy increases with increasing length of the antenna and

decreasing wavelength. Therefore the median value of the energy increases with increasing ratio L/w. Note that for a

given L This ratio increases with decreasing wavelength. To maximize the energy output of the antenna let us work with

[1][2]
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the smallest possible wavelength that can be accommodated by the theory that led to Equation 1. Since the above

equation is valid when the wavelength is in the order of or larger than the radius of the antenna r, let us replace w with r in
Equation 1. With this slight change, Equation 1 can be written as

As mentioned earlier,  the median energy increases with increasing ratio L/r. Now, the smallest radius of the antenna that

we can find in nature cannot be smaller than the atomic dimensions. We can represent the atomic dimension by the Bohr

radius. Let us denote the Bohr radius by b . The largest possible value of the length of the antenna is given by the size of

the universe. Actually, by the size of the universe we mean the region of the universe that is in causal contact with the

observer. The outer boundary of this region is determined by the Hubble radius. Thus the maximum length of the antenna

that can be accommodated within the universe is equal to the Hubble radius. However, the Hubble radius increases with

time and the maximum length of the antenna ever possible is determined by the ultimate or the steady state value of the

Hubble radius. Let us denote this steady state value by R. Thus, the maximum value of the ratio L/r ever possible in the

current universe is given by R/b . Let us denote such an antenna as the 'ultimate antenna'. Note that ultimate antenna is a

hypothetical antenna; it can never be realized in practice, and its radiating efficiency surpasses any other antenna in the

universe. That is, for a given oscillating charge no other antenna in the universe can generate, over a given period of time,

as much energy as the ultimate antenna. The energy radiated by the ultimate antenna over a period of T/2 is given by 

               

One can observe that this energy depends on the magnitude of the oscillating charge in the antenna. Let us now estimate

the magnitude of the charge needed in the antenna so that U =hf where h is the Planck constant. Of course, hf is the

energy associated with a single photon of frequency f. This charge denoted here by q  is given by

In order to estimate the value of q  we need to plug in the value of R into above equation. Theory of cosmology states that

the value of R is determined by the energy density of the vacuum. The connection between these two parameters is given

by   

                                                                                       

In the above equation, G is the gravitational constant and S is the energy density of the vacuum. Substituting the

expression for R in equation 4 we obtain

Substituting numerical values for the variables together with the experimentally observed value of the energy  density of

the vacuum of about about 6×10  J/m  into equation 6 we obtain q =1.603×10  C. This value is equal to the

elementary charge to an accuracy of about 0.1%. This shows that when the magnitude of the oscillating charge in the

ultimate antenna is equal to the charge of an electron, the energy dissipated over a single burst of radiation of the antenna

becomes equal to the energy of a photon. Now, recall that the ultimate antenna is the most efficient antenna that one can

have in the universe, any other antenna will need a charge larger than the elementary charge to make the energy

associated with a single burst of energy to be equal to that of a photon. The same is true if we include the losses pertinent

to current propagation along the antenna. These losses will reduce the radiated energy for a given charge and, therefore,

more charge is needed than the lossless case to reach the same level of energy dissipation. Thus we can write down the

following universal condition which is valid for all the antennas: U ≥ hf →q ≥ e where q  is the magnitude of the oscillating

charge in the antenna, e is the elementary charge, f is the frequency of oscillation and h is the Planck constant.  Note

however that the reverse of this condition, namely, q ≥ e →U ≥ hf  is not true because q ≥ e does not necessarily leads to

U ≥ hf.

Note that up to this point we have not deviated from classical electrodynamics and the above relationship is a

consequence of this classical theory.
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3. Discussion

Let us look at the universal condition derived in the previous section, namely, U ≥ hf →q ≥ e. Consider the left hand side

of this relationship. Classical electrodynamics does not place any restrictions on the amount of energy that can be

generated in a single burst of radiation. That is, U can take any small value in classical electrodynamics. In other words,

according to classical electrodynamics there is no reason for U to be larger than hf. However, we k,now from quantum

mechanics that the energy dissipated in a single burst of radiation cannot be smaller than that of a photon. Thus, only by

appealing to quantum mechanics we can ascertain that U ≥ hf is a correct and valid statement. Therefore, by appealing to

quantum mechanics we can also state q ≥ e. That is the free charge available in nature has to be equal to or larger than

that of an electron.   

Equation 6 is derived using pure classical electrodynamics and it indicates that q  is almost equal to the elementary

charge. If we assume that q  is exactly equal to the elementary charge, then, Equation 6 can be written as   

As explained in reference [1], Note that even though Equations 6 and 7 are almost equivalent they are based on very

different assumptions. In Equation 6, q  is the charge necessary in the ultimate antenna so that the median energy

dissipated over half a period, T/2 , is equal to hf . This is a result based purely on classical electrodynamics. The value

of q   is almost equal to the elementary charge (to an accuracy less than 1%) and we assume that q  = e. However, the

condition q  = e is valid only if the value of U does not go below hf . But, classical electrodynamics does not place any

restrictions on the value of U and accordingly, it can take any value larger than zero. The statement q  = e is based,

therefore, on quantum nature of the electromagnetic radiation. Thus, Equation 7 is a result of the fact that electromagnetic

radiation consists of photons.    

Equation 7 can be rewritten while making S the subject as   

Equation 8 is an expression for the energy density of vacuum in terms of well-known physical constants. If we substitute

numerical values to these constants, we find S =4×10  J/m  which is close to the measured value 6×10  J/m . Indeed,

S =4×10  J/m  is the value we need in Equation 6 to make q  = e . Equation 8 can be considered as an alternative

expression for the vacuum energy density.

In a glance, it is difficult to understand how the charge of an electron and the size of the steady state (or the ultimate)

Hubble radius, as indicated by Equations 6, 7 and 8, are connected. We believe that the relationship between the size of

the universe and the elementary charge is a secondary relationship. As per Equations 6 and 7, the true primary

connection is probably associated with the energy density of the vacuum and the elementary charge. Observe also that if

S=0 then R=∞ and the value of the elementary charge goes to zero. This seems to indicate that the vacuum energy is an

essential feature for the existence of electric charge.   

4. Conclusion

All radiating systems that generate frequency domain radiation satisfy the condition U ≥ hf →q ≥ e where U is the energy

dissipated within the time T/2.  By combining this result with the concept that electromagnetic radiation is a stream of

photons, it is possible to show that the elementary charge and the vacuum energy are intimately connected. 
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