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Stroke is a major cause of death worldwide, leading to serious disability. Post-ischemic injury, especially in the cerebral

ischemia-prone hippocampus, is a serious problem, as it contributes to vascular dementia. Many studies have shown that

in the hippocampus, ischemia/reperfusion induces neuronal death through oxidative stress and neuronal zinc (Zn2+)

dyshomeostasis. Glutathione (GSH) plays an important role in protecting neurons against oxidative stress as a major

intracellular antioxidant. In addition, the thiol group of GSH can function as a principal Zn2+ chelator for the maintenance

of Zn2+ homeostasis in neurons. These lines of evidence suggest that neuronal GSH levels could be a key factor in post-

stroke neuronal survival. In neurons, excitatory amino acid carrier 1 (EAAC1) is involved in the influx of cysteine, and

intracellular cysteine is the rate-limiting substrate for the synthesis of GSH. Recently, several studies have indicated that

cysteine uptake through EAAC1 suppresses ischemia-induced neuronal death via the promotion of hippocampal GSH

synthesis in ischemic animal models.
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1. Introduction

Stroke is one of the most frequent causes of death worldwide and a major cause of serious disability. Lifestyle factors that

have been shown to increase the risk of stroke include smoking; lack of physical activity; being overweight; and increased

intake of salt, alcohol, and fat. These factors also impact on outcomes in patients with stroke. According to a systematic

analysis from 2016, there were 80.1 million prevalent cases of stroke, 5.5 million deaths, and 116.4 million disability-

adjusted life years resulting from stroke globally that year . In recent years, although the rate of deaths due to acute

ischemic stroke has declined because of the introduction of new therapeutic strategies and specialized care, ischemic

stroke survivors continue to suffer from disabilities . In particular, ischemia-induced damage to the hippocampus, the

main brain structure related to learning and memory , is recognized as a serious problem, as it leads to cognitive

impairment .

The pathophysiological mechanisms underlying ischemia-induced hippocampal damage have been studied intensively.

Oxidative stress, a hallmark of brain ischemia, has been identified as a major factor. It results from the increased

generation of reactive oxygen species (ROS) and reactive nitrogen species, which lead to apoptosis and necrosis of

neurons . Another factor is the disruption of zinc (Zn ) homeostasis in the hippocampus. Zn  levels are maintained

at a constant level in the adult mammalian brain, including the hippocampus, in which Zn  participates in normal

physiological brain functions, such as learning and memory . However, ischemia/reperfusion disrupts neuronal

Zn  homeostasis, resulting in neuronal cell death within the hippocampus . Therefore, not only oxidative stress but also

the disruption of neuronal Zn  homeostasis are recognized as important therapeutic targets for the treatment of ischemia-

induced hippocampal injury.

Glutathione (GSH) is the most abundant low molecular weight thiol compound within cells, and it plays a crucial role in cell

defense not only against oxidative stress but also against the disruption of Zn  homeostasis. In neurons, GSH levels are

predominantly regulated by excitatory amino acid carrier 1 (EAAC1), which can transport cysteine, a substrate for GSH

synthesis. Accumulating evidence indicates that EAAC1 gene deletion exacerbates ischemia-induced hippocampal

damage via impaired Zn  homeostasis as well as oxidative stress , and that diurnal fluctuations in EAAC1 levels affect

susceptibility to ischemia-induced neuronal cell death in the hippocampus . These findings suggest that neuronal GSH

levels regulated by EAAC1 are crucial in this context.

2. Protective Roles of Glutathione (GSH) in Ischemia-Induced
Hippocampal Injury

2.1. Anti-Oxidative Role of GSH in Ischemia-Induced Oxidative Stress
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Cerebral ischemia leads to a marked increase in oxidative stress resulting from the generation of ROS, such as

superoxide, hydrogen peroxide, and hydroxyl radicals . Oxidative stress can rapidly damage many components of the

cell, including lipids, proteins, and DNA, whereby it contributes to the progression of neuronal cell death after ischemic

stroke . Therefore, oxidative stress is recognized as one of the major mediators of cerebral ischemia/reperfusion-

induced hippocampal injury .

GSH is a major endogenous component of the cellular antioxidant defense. It is capable of scavenging various ROS

directly. Research has demonstrated that the order of GSH reactivity towards the radicals is OH > OCH  > OOH

> OOCCl  > OOCHCH  > OOCH , and that the rate constants range from 2.02 × 10  M  s  to the diffusion limit (7.68

× 10  M  s ) . These findings indicate that GSH is an excellent free radical scavenger. On the other hand, GSH is

also known to act as a substrate for a number of glutathione peroxidases to detoxify ROS . During these reactions,

GSH is oxidized and converted into glutathione disulfide (GSSG), which is subsequently reduced to GSH by glutathione

reductase . However, cellular GSH levels can be lowered by the export of GSSG when the production of the latter

exceeds the capacity for recycling to the former, indicating that this antioxidative defense system cannot offset oxidative

stress . Indeed, many studies have demonstrated that the brain content of endogenous GSH is depleted during

ischemia/reperfusion , and that treatment with GSH or glutathione monoethyl ester, a cell-permeable derivative of

GSH, ameliorates ischemia-induced oxidative damage, including DNA and lipid oxidation in the hippocampus .

These observations suggest that maintaining neuronal GSH levels is an important constituent in protecting neurons

against oxidative stress in the post-ischemic hippocampus (Figure 1).

Figure 1. Mechanisms of GSH protection against hippocampal neuron damage following brain ischemia. The

abbreviations are as follows: cysteine (Cys), glutamate (Glu), glycine (Gly), excitatory amino acid carrier 1 (EAAC1),

glutathione (GSH), glutathione disulfide (GSSG), GSH reductase (GR), GSH peroxidase (GPx), reactive oxygen species

(ROS).

Interestingly, Won et al. demonstrated that the GSH levels in CA1 pyramidal neurons were decreased during the first few

hours of ischemia/reperfusion, accompanied by increased superoxide levels; conversely, the prevention of

ischemia/reperfusion-induced increase in superoxide production using an inhibitor of nicotinamide adenine dinucleotide 3-

phosphate oxidase, a major source of ROS, was found to suppress the decline in GSH in post-ischemic neurons . On

the other hand, they also showed that mice in which neuronal GSH levels were maintained by treatment with N-acetyl

cysteine (NAC), a cell-permeable precursor of GSH, exhibited a reduction in neuronal oxidative stress and neuronal cell

death in the hippocampus following ischemia/reperfusion . These findings indicate that the depletion of neuronal GSH

is both a result and a cause of neuronal oxidative stress following ischemia/reperfusion. In contrast, changes in the levels

of GSH in post-ischemic glial cells, such as astrocytes and microglia, remain to be elucidated. Astrocytes play an
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important role in the synthesis of neuronal GSH by supplying precursor molecules . Therefore, it is necessary to clarify

the role of glial GSH in neuronal survival in the post-ischemic hippocampus.

2.2. GSH Protects Neurons from Ischemia-Induced Disruption of Intracellular Zn  Homeostasis

Zn  is involved in hippocampal injury following brain ischemia. In the mammalian brain, most of the Zn  is bound to

specialized Zn  proteins—for example, metallothionein and transcription factors . A smaller part of it is concentrated in

the presynaptic vesicles in a subset of glutamatergic neurons throughout the forebrain, especially in the hippocampus 

. Therefore, the intracellular free Zn  concentration in the hippocampus is considered to be very low under normal

physiological conditions . However, the stored Zn , along with the protein-bound portion, is massively released during

ischemia and the onset of reperfusion, subsequently accumulating within hippocampal neurons . The

prevention of this process using Zn  chelators, including calcium disodium ethylenediamine tetraacetate and clioquinol,

has been shown to protect hippocampal neurons from ischemia-induced neurodegeneration , suggesting that the

ischemia-induced disruption of neuronal Zn  homeostasis contributes to neurodegeneration in the hippocampus.

The thiol moiety of GSH has a high affinity for Zn  through non-enzymatic conjugation. Treatment with GSH protects

neurons against Zn  accumulation-induced cell toxicity . The replenishment of GSH using NAC reduces

Zn  accumulation and neurodegeneration in the post-ischemic hippocampus . These findings suggest that GSH acts

as an intrinsic factor that buffers intracellular Zn  concentrations to prevent the ischemia-induced disruption of

Zn  homeostasis; in addition to its antioxidative activity, this mechanism protects neurons (Figure 1).

In contrast, Zn  binds and inhibits glutathione reductase and peroxidase, the major enzymes of the glutathione redox

cycle . Chen and Liao demonstrated evidence indicating that Zn  entry into neurons causes a decrease in

intracellular GSH levels and eventually triggers neuronal cell death . GSH can suppress the ischemia-induced

disruption of Zn  homeostasis, but this function may be affected by the accumulation of Zn  in neurons.
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