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The electrocardiogram (ECG) is among the most commonly utilized clinical tests for patient monitoring and

assessment because it is easy to acquire and provides extensive information about patients’ cardiac health.

Instead, continuous, real-time, remote monitoring allows for a more rigorous oversight of patients’ conditions, even

compared to in-hospital observation. Wearable devices to address monitoring are now a prominent focus of

industry, which in turn provides strong motivation for applying artificial intelligence (AI) algorithms to ECG signals

for automated disease detection and prediction.

ECG  wearable technology  machine learning  deep learning  m-health

1. Diseases

1.1. Arrhythmias

Cardiac arrhythmia is an abnormal rhythm of the heartbeat . The electrical pathway of a normal cardiac

contraction has a characteristic electrical pattern on an electrocardiogram (ECG) recording, comprised of a “P”

wave (indicating atrial depolarization), followed by a “QRS” complex (indicating ventricular depolarization), and a

“T” wave (indicating ventricular repolarization). A typical ECG is shown in Figure 1.
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Figure 1. Components of a normal electrocardiogram include P- and T-waves and the QRS complex.

Perturbations in the ECG may indicate underlying pathophysiologic changes. Common conditions that can be

discerned from ECG changes include various arrhythmias. The most common type of irregular arrhythmia is atrial

fibrillation (AF), which is characterized by disorganized electrical impulses of the atrium. AF increases the risk of

stroke by up to 17% annually in high-risk individuals . In addition, AF with sustained ventricular rates greater than

110 beats per minute can lead to cardiomyopathy, heart failure (HF), and sudden cardiac death if not adequately

treated . The worldwide prevalence of AF was estimated at approximately 46 million individuals in 2016 , with

up to one-third of these individuals being asymptomatic and thus unaware they have AF while also being at

increased risk of stroke.

In addition to AF, there are other arrhythmias for which wearable ECG devices are amenable including premature

atrial contraction, premature ventricular contraction (PVC), atrial flutter, atrioventricular reentrant tachycardia,

atrioventricular nodal reentrant tachycardia, and first-, second-, or third-degree heart block. Several recent papers

demonstrated the use of wearable technology capable of identifying premature atrial contractions or PVCs with

over 97% accuracy . A class of malignant arrhythmias has a high risk of progression to cardiac arrest or

even death . Examples of malignant rhythms include ventricular tachycardia and ventricular fibrillation.

1.2. Coronary Artery Disease
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Coronary artery disease is the insidious buildup of cholesterol plaques within the walls of the arteries of the heart,

eventually leading to a narrowing of the blood vessels . When the narrowing of blood vessels surpasses a

critical threshold (often described as a narrowing of greater than 70% of the inner lumen of the artery), symptoms

such as exertional chest pain (angina), exertional shortness of breath, and decreased exercise tolerance can

occur. Coronary artery disease accounts for the vast majority of cardiac-related deaths . A diagnosis of coronary

heart disease generally requires a history and physical exam, a stress test, and an observation of ECG changes

suggestive of cardiac ischemia.

Various ECG changes are associated with acute and chronic ischemia. For instance, the presence of Q waves in

any lead other than the right-sided leads (i.e., aVR and V1, occasionally in III) is often pathognomonic for prior

infarction and non-viable myocardium . On the other hand, chronically inverted T-waves and ST depressions are

generally described as non-specific ECG patterns and are difficult to interpret on their own, requiring additional

context. However, in the correct clinical setting, these changes can be dynamic where they appear while the patient

has active symptoms and normalize when they resolve. Such dynamic changes indicate significant coronary artery

disease that needs to be aggressively investigated because the sudden development of ST-segment elevation

associated with symptoms suggests an evolving coronary artery occlusion and subsequent myocardial impairment.

Such patients need to be examined then treated immediately. Future work to develop ECG- artificial intelligence

(AI) wearables for real-time detection of acute ischemia will likely improve outcomes.

2. Wearables

ECG-AI has been combined with wearable devices to investigate various cardiac pathologies, including AF, stroke,

cardiac arrest, and heart failure. In fact, arrhythmia monitoring is among the most popular applications of wearable

devices in medicine. However, wearable devices are limited in their ability to detect arrhythmias other than AF 

, particularly ventricular tachycardia or ventricular fibrillation, which is why wearable technologies capable of

accurately detecting either ventricular tachycardia or ventricular fibrillation were limited in the literature.

Overall, there are a limited number of studies involving wearables. Some studies use commercially available

wearables to explore the implementation of ECG-AI. For example, devices such as the Amazfit Band 1S (PPG and

single-lead ECG) , the HealthyPiV3 biosensors , or Polar H7 HR monitor  have been utilized. A few

research groups have even built their own wearable ECG recording prototypes .

The Food and Drug Administration (FDA) recently approved a single-lead ECG smartwatch proven to detect AF in

the general population . Another device developed for AF monitoring and detection includes a single-lead

wireless ECG patch worn over the chest, which provides real-time ECG monitoring using cloud-based data

analysis and data sharing with medical providers . Similarly, a custom wrist-based wearable ECG recorder was

compared to the standard 12-lead configuration via a prospective, registration-only, single-center study for the

detection of AF . Although a small dataset based on a relatively low number of patients was used, a sensitivity

and specificity of 99.4% and 99.8%, respectively, were reported. The wrist-based device’s convenience and ease

of use was highlighted as an attractive modality for arrhythmia detection in the general population. Lastly, a single-
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lead ECG chest belt that transmits data to a cloud service for analysis was described, and a sensitivity and

specificity of 100% and 95.4%, respectively, were reported . The study included a user experience

questionnaire, showing that 77% of participants preferred the chest belt to a standard 3-lead Holter monitor.

Additional studies detecting AF have been performed using commercially available heart rate monitors and ECG

systems .

3. Algorithms

3.1. Arrhythmia

Due to their ubiquitous availability, most ECG-AI research has been performed using public databases such as the

PhysioNet  MIT-BIH Arrhythmia database  while only a few research groups have independently acquired

data from patients. Curated and publicly available datasets include physician annotations that provide a reference

for ECG-AI algorithm training (Table 1).

Machine learning (ML) and deep learning (DL) have both been extensively applied to ECG data to detect

arrhythmias. Despite being relatively poorer performing, ML is utilized for arrhythmia detection due to some of the

limitations of DL, including resource-intensive hyper-parameters to find the optimal network configuration and the

challenges in understanding the rules underlying trained prediction models . However, DL has shown modest

improvements over ML for arrhythmia detection. The varying sample resolutions could pose a challenge for these

techniques, but it was shown that it is possible to accurately detect arrythmias using down sampled ECG data .

ML approaches often include the use of decision tree ensembles such as Random Forest  or support vector

machines (SVMs)  for arrhythmia classification. Multi-stage and multi-level classification systems derive local

features of atrial and ventricular activity through a combination of SVMs and decision trees and global features

from the raw ECG recording, ultimately leading to classification through linear SVMs. Furthermore, a rotated linear-

kernel SVM has been proposed in which two SVM classifiers are trained, one on the global dataset and the other

on a patient-dependent dataset obtaining two different discriminant hyperplanes. The final hyperplane, obtained by

rotating the first hyperplane by a specific amount towards the second hyperplane, resulted in an improved

sensitivity . Similarly, this ML method has been used with a classifier of de-correlated Lorenz plots of inter-beat

intervals , and with another classifier built on features extracted through pre-processing methods from density

Poincaré plots that represented the ECG segments . Alternatively, the use of SVMs through a semi-supervised

learning method was demonstrated , while the hybrid framework effectively combined the advantages of

ensemble learning and evolutionary computation to maximize arrhythmia classification accuracy .

With regard to DL approaches, convolutional neural network (CNN) architecture was applied to arrhythmia 

and AF classifications . Other architectures of interest for AF classification include a deep densely connected

neural network based on 12-lead ECG , a feedforward neural network based on features encompassing R-R

intervals  and another based on the Lightweight Fusing Transformer . Hybrid constructions have also been

presented, frequently involving an architecture based on a CNN and long short-term memory (LSTM) ,
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as well as an extension to SVM with predictions from a CNN . With a similar premise to the rotated linear-kernel

SVM , a study has proposed a Generic CNN suitable for all individuals, and a tuned dedicated CNN as obtained

by finetuning the previous model with respect to a specific individual . Another approach of interest is the use of

multi-scale (MS) CNNs to improve feature extraction and classification from ECG data . Additionally, a global

hybrid multi-scale convolutional neural network (Acc 99.84%) was proposed as an advanced alternative to other

MS-based approaches through their hybrid multi-scale convolution module .

Previous research has also designed lightweight DL models using cloud-based applications to efficiently classify

ECG data. These approaches utilize fused recurrent neural network (RNN) layers instead of standard RNN layers

. The application of compression  and conversion techniques (Acc 99.60%) , and model-hardware co-

optimization  to reduce the model’s size in terms of computational parameters, resulted in lower memory

consumption and inference time. Other techniques to accelerate arrhythmia detection include real-time data

compression, signal processing, and data transmission . Alternatively, ECG data may be compressed to

enable real-time AF classification .

In addition to directly processing ECG data, some studies focused on its two-dimensional representation, which

can be used for feature extraction and/or classification. Examples of these representations include spectrograms

 and iris spectrograms . Alternatively, the ECG signal may be transformed into an electrocardiomatrix, which

is a two-dimensional representation that includes the rhythm and shape of the QRS complex . A beat-interval-

texture CNN was then used to process the electrocardiomatrix. In this architecture, there are four different layers:

the first two layers perform low-level feature extraction, and the two subsequent layers perform high-level feature

extraction using three types of convolution filters (beat, interval, and texture). Next, a feature attention layer weighs

the identified features concerning the arrhythmia classes and uses such weighted features for classification.

Deep metric learning for PVC detection has also been demonstrated . Such learning methods combine the

mechanisms of metric learning for effective feature extraction in which the features are processed with k-nearest

neighbors for binary classification. In comparing ML and DL, the former may use the ECG to define summary

features that provide physiologic insight, whereas the latter automatically extracts discriminating information from

complete waveforms . ML and DL may complement one another, as demonstrated by the multiview fusion

classification model in which both summary and deep features from ECG signals were fused . However, DL may

independently offer some physiologic information via gradient-weighted class activation mapping, which can

highlight the relative contributions of the temporal regions of the ECG signal that most contribute to the AI-obtained

classification .

Table 1. Summary of ECG-based AI algorithms applied to arrhythmias.
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Authors
(Year)

Specific
Application

ECG System
(Sampling

Frequency)

AI
Algorithm/Method Database/Dataset

Performance (%)

Acc Sen Spe AUC F1

Jeon et al.
(2020) 

General
arrhythmias

2-lead ECG
patch

Recurrent Neural
Networks

MIT-BIH Arrhythmia
Wearable device: S-

99.80 - - - -
[25]
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Authors
(Year)

Specific
Application

ECG System
(Sampling

Frequency)

AI
Algorithm/Method Database/Dataset

Performance (%)

Acc Sen Spe AUC F1
[Samsung S-

Patch 2]
(256 Hz)

Patch 2

Plawiak et
al. (2020)

General
arrhythmias

-
Deep Genetic
Ensemble of
Classifiers

MIT-BIH Arrhythmia 99.37 94.62 99.66 - -

Panganiban
et al. (2021)

General
arrhythmias

2-lead ECG
[HealthyPiV3
biosensors]

(n.s.)

CNN

MIT-BIH Atrial
Fibrillation, PAF

Prediction Challenge,
PTB Diagnostic ECG,

Challenge 2015
Training Set,

Fantasia, and PAF
Prediction Challenge.

ECG signals
collected for this

study

98.73 96.83 99.21 - 96.83

Alqudah et
al. (2021)

General
arrhythmias

- CNN
IEEE DataPort

MIT-BIH Arrhythmia
99.13 99.31 99.81 - -

Yildirim et
al. (2018)

General
arrhythmias

- CNN MIT-BIH Arrhythmia 95.20 93.52 99.61 - 92.45

Bazi et al.
(2020) 

General
arrhythmias

Wireless 3-
lead ECG

sensor
[Shimmer
Sensing

(100, 200 Hz)

SVM

12-lead Tech-Patient
CARDIO ECG

simulator
Wearable device:
Shimmer Sensing

MIT-BIH Arrhythmia

95.10 95.80 - - -

Lee et al.
(2022) 

General
arrhythmias

- CNN

ECG from patients at
the Korea University

Anam Hospital in
Seoul, Korea

97.90 98.30 97.60 99.70 97.70

Itzhak et al.
(2022) 

General
arrhythmias

- Random Forest

Annotated Holter
ECG database
acquired at the

University of Virginia
Heart Station

93.30 91.30 81.30 95.30 90.60

Li et al.
(2018) 

General
arrhythmias

-
Generic CNN and
Tuned Dedicated

CNN
MIT-BIH Arrhythmia 96.89 - - - -
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Authors
(Year)

Specific
Application

ECG System
(Sampling

Frequency)

AI
Algorithm/Method Database/Dataset

Performance (%)

Acc Sen Spe AUC F1

Ran et al.
(2022) 

General
arrhythmias

12-lead ECG
prototype
(500Hz)

Deep CNN

12-lead ECG
recordings from three

centers of Tongji
Hospital

- 89.10 99.70 94.40 91.30

Ribeiro et
al. (2022)

General
arrhythmias

- CNN MIT-BIH Arrhythmia 99.60 98.50 99.80 - 98.80

Hua et al.
(2018) 

General
arrhythmias

- SVM MIT-BIH Arrhythmia 98.58 97.70 99.62 - -

Karthiga et
al. (2021)

General
arrhythmias

- CNN MIT-BIH Arrhythmia 91.92 90.21 95.19 - 90.11

Zhang et al.
(2022) 

General
arrhythmias

- CNN MIT-BIH Arrhythmia 98.74 98.11 99.05 - -

Lee et al.
(2021) 

General
arrhythmias

-
Beat-Interval-
Texture CNN

2017
PhysioNet/Computing

in Cardiology
Challenge

- 80.73 - - 81.75

Smisek et
al. (2018)

General
arrhythmias

-
SVMs Decision

Tree

2017
PhysioNet/Computing

in Cardiology
Challenge

- - - - 81.00

Shin et al.
(2022) 

General
arrhythmias

-
CNN-Bidirectional
Long Short-Term

Memory
MIT-BIH Arrhythmia 91.70 92.00 91.00 99.40 92.00

Alqudah et
al. (2021)

General
arrhythmias

- CNN MIT-BIH Arrhythmia 93.80 95.20 97.40 - 93.60

Huang, et
al. (2021)

General
arrhythmias

- CNN-LSTM MIT-BIH Arrhythmia 98.93 96.46 99.33 - -

Tang et al.
(2019) 

General
arrhythmias

- SVM MIT-BIH Arrhythmia 98.90 92.80 99.40 - 92.00

Sakib et al.
(2021) 

General
arrhythmias

- Deep-Learning-
based Lightweight

Arrhythmia
Classification

(CNN)

MIT-BIH
Supraventricular

Arrhythmia
MIT-BIH Arrhythmia

St Petersburg

96.67 - - 97.96 -
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Authors
(Year)

Specific
Application

ECG System
(Sampling

Frequency)

AI
Algorithm/Method Database/Dataset

Performance (%)

Acc Sen Spe AUC F1
INCART 12-lead

Arrhythmia
Sudden Cardiac

Death Holter

Shao et al.
(2020) AF

Custom 1-
lead ECG

patch
(250 Hz)

Decision Tree
Ensemble

2017
PhysioNet/Computing

in Cardiology
Challenge

MIT-BIH Atrial
Fibrillation

Simulated ECG
signals from

generator FLUKE
MPS450

99.62 99.61 99.64 - 92.00

Chen et al.
(2020) AF

PPG & 1-
lead ECG
[Amazfit

Health Band
1S]

(250 Hz)

CNN
PPG and single-

channel ECG data
94.76 87.33 99.20 - -

Cai et al.
(2020) AF

12-lead ECG
(500 Hz)

Deep Densely
connected Neural

Network

12-lead ECG 10s
recordings collected

from multiple
hospitals and

wearable ECG
devices (3 different

data sources)

99.35 99.19 99.44 - -

Cheng et
al. (2020) AF -

Deep Learning
Neural Networks

MIT-BIH Atrial
Fibrillation

97.52 97.59 97.40 - 98.02

Fan et al.
(2018) AF - Multi-Scale CNN

2017
PhysioNet/Computing

in Cardiology
Challenge

98.13 93.77 98.77 - -

Ramesh et
al. (2021) AF - CNN

Train: MIT-BIH
Normal Sinus

Rhythm, MIT-BIH
Atrial Fibrillation, MIT-

BIH Arrhythmia
Test: UMass PPG,

acquired from wrist-
worn wearable

devices

95.50 94.50 96.00 95.30 93.40
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3.2. Other Cardiovascular Diseases

Other cardiovascular conditions amenable to ECG-AI include myocardial infarction and heart failure (Table 2).

Particularly with myocardial infarction detection, there has been a shift from ML techniques towards DL techniques

 due to their higher performances and the fact that no handcrafted feature extraction is required. DL

techniques for myocardial infarction detection include the application of both simple and complex models.

Examples of simple DL models include an artificial neural network with only three layers (Acc 99.10%)  and CNN

 and LSTM  algorithms. More complex DL models include a deep belief network for unsupervised heart

rate variability (HRV) feature extraction and selection with LSTM for classification , a multi-channel lightweight

model for the simultaneous analysis and classification of four ECG leads , and a two-dimensional CNN for the

classification of ECG waveform snapshots . It is important to notice that the ECG-AI determination of myocardial

Authors
(Year)

Specific
Application

ECG System
(Sampling

Frequency)

AI
Algorithm/Method Database/Dataset

Performance (%)

Acc Sen Spe AUC F1

Ma et al.
(2020) AF

SmartVest
system
(400 Hz)

SVM extended
with CNN

predictions

Train: MIT-BIH Atrial
Fibrillation

Test:
PhysioNet/Computing

in Cardiology
Challenge 2017,

China Physiological
Signal Challenge

(CPSC) 2018, 24-h
ECG recording (12 h
before and 12 h after
the radio frequency

ablation surgery)
collected from an AF

patient with the
wearable device

99.08 98.67 99.50 - -

Lown et al.
(2020) AF

1. 12-lead
ECG
(n.s.)
2. HR

monitor
[Polar H7
(PH7) HR]

(n.s.)

SVM
MIT-BIH Atrial

Fibrillation
MIT-BIH Arrhythmia

- 100.0 97.60 - -

Zhang et al.
(2021) AF -

Global Hybrid
Multi-Scale

Convolutional
Neural Network

China Physiological
Signal Challenge

2018 (12-lead ECG)
2017

PhysioNet/Computing
in Cardiology

Challenge (single-
lead ECG)

99.84 99.65 99.98 - 99.54

Zhang et al.
(2020) 

AF - CNN
MIT-BIH Atrial

Fibrillation
96.23 95.92 96.55 - 96.25

Chen et al.
(2022) AF -

Feedforward
Neural Network

2017
PhysioNet/Computing

in Cardiology
Challenge

MIT-BIH Arrhythmia

84.00 84.26 93.23 89.40 -

Mei et al.
(2018) AF - Baggin Trees

2017
PhysioNet/Computing

in Cardiology
Challenge

96.60 83.20 98.60 - -
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infarction commonly involves 12-lead data because the different leads represent different projections of the heart’s

electrical activity, which is necessary to capture region-specific ischemia . However, some

algorithms were assessed based on data recorded from wearable single-lead devices .

Table 2. Summary of ECG-based AI algorithms applied to other cardiovascular diseases.

The analysis of 12-lead data also enabled the screening of heart failure with reduced ejection fraction (Acc

82.50%) . Following a short-time Fourier transform in combination with a CNN, an interpretable model

highlighted the essential regions in the various ECG leads associated with the final classification. In particular, the

lateral (aVL, I, −aVR, V5, V6) and anterior leads (V3, V4) greatly impacted heart failure with a reduced ejection

Authors
(Year)

Specific
Application

ECG System
(Sampling

Frequency)

AI
Algorithm/Method Database/Dataset

Performance (%)

Acc Sen Spe AUC F1

Wu et al.
(2020) AF -

Extreme Gradient
Boosting

2017
PhysioNet/Computing

in Cardiology
Challenge

MIT-BIH Atrial
Fibrillation

MIT-BIH Normal
Sinus Rhythm

MIT-BIH Arrhythmia

95.47 94.59 96.40 - 95.56

Bashar et
al. (2021) 

AF, PAC
and PVC

- SVM
Medical Information
Mart for Intensive
Care (MIMIC) III

97.45 98.99 95.18 - -

Yu et al.
(2021) PVCs -

Deep Metric
Learning K-

Nearest Neighbors
MIT-BIH Arrhythmia 99.70 97.45 99.87 - -

Wang
(2021) PVCs -

CNN with
improved Gated
Recurrent Unit

network

MIT-BIH Arrhythmia
China Physiological

Signal Challenge
2018

98.30 98.40 98.20 - -

Meng et al.
(2022) PVC, SPB -

Lightweight
Fussing

Transformer with
LightConv
Attention

The 3rd China
Physiological Signal

Challenge 2020
99.32 92.44 - - 93.63

Khan et al.
(2020) CVDs - SVM

Cleveland Heart
Disease dataset from

the UCI repository
93.33 94.29 92.73 - -

Dami et al.
(2021) CVDs -

LSTM Deep Belief
Network

Four databases:
DB1—KAGGLE heart
disease dataset|DB2
—Shahid Beheshti
Hospital Research

Center|DB3—
Physionet site—

Hypertensive
patients|DB4—UCI

Heart Disease
dataset

88.42 85.13 85.54 - -

Khan et al.
(2020) 

CVDs Custom 1-
lead ECG

(n.s.)

Deep
Convolutional

Neural Network

UCI machine learning
repository,

98.20 97.80 92.80 - 95.00

[31]
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Authors
(Year)

Specific
Application

ECG System
(Sampling

Frequency)

AI
Algorithm/MethodDatabase/Dataset

Performance (%)

Acc Sen Spe AUC F1

Gibson et
al. (2022)

Myocardial
Infarction

- CNN

Latin America
Telemedicine

Infarct Network
(LATIN)

90.50 86.00 94.50 - -

Baloglu et
al. (2019)

Myocardial
Infarction

- CNN
PTB ECG: MI on
standard 12-lead

ECG data
99.78 99.80 - - -

Cho et al.
(2021) 

Heart
Failure

12-lead
ECG [Page

Writer
Cardiograph

—Philips]
(500 Hz)

Short-time Fourier
transform–CNN

combination

ECG from
multicenter study

82.50 92.10 82.10 92.90 -

Wasimuddin
et al. (2021)

Myocardial
Infarction

Custom 1-
lead ECG

(n.s.)
CNN

European ST-T
Custom wearable

device
99.26 99.27 99.27 - -

Chowdhury
et al. (2019)

Myocardial
Infarction-
Cardiac
Arrest

Custom 1-
lead ECG
(500 Hz)

Support Vector
Machine

MIT-BIH ST
Change

Normal subjects
and an ECG
simulator to

simulate
abnormal ST-
elevated MI

situations to test
the functionality of

the complete
system in real-

time

97.40 99.10 - - 98.70

Shahnawaz
et al. (2021)

Myocardial
Infarction

-
Artificial Neural

Network
PTB (PhysioNet) 99.10 100.00 98.10 - 99.00

Sopic, et al.
(2018) 

Myocardial
Infarction

- Random Forest PTB (PhysioNet) 80.30 87.95 79.63 - -
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Notes: Bold type highlights the wearable device when present and used to collect data. The best AI

model/algorithm and results, when different models/algorithms, datasets, signals, and events are considered, were

reported. Abbreviations: AF = atrial fibrillation; CVD = cardiovascular disease; PAC = premature atrio ventricular

contractions; PVC = premature ventricular contraction; VF = ventricular tachycardia; VF = ventricular fibrillation;

SPB = supraventricular premature beat; ECG = electrocardiogram; PPG = photoplethysmography; n.s. = not

specified; HR = heart rate; CCN = convolutional neural network; LSTM = long short-term memory; SVM = support

vector machine; Acc = accuracy; Sen = sensitivity; Spe = specificity; AUC = area under the curve of receiver-

operating characteristic curves.

Notes: Bold type highlights the wearable device when present and used to collect data. The best AI

model/algorithm and results, when different models/algorithms, datasets, signals, and events are considered, were

reported. Abbreviations: n.s. = not specified; CNN = convolutional neural network; Acc = accuracy; Sen =

sensitivity; Spe = specificity; AUC = area under the curve of receiver-operating characteristic curves.

fraction detection. In contrast, the performance of the inferior leads (II, aVF, III) was relatively poor. The findings

also confirmed that a rightward T-wave axis, prolonged QT duration, and prolonged QTc are associated with heart

failure and that the T-wave axis is an independent and strong risk factor for cardiac events in the elderly.
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