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Alzheimer’s disease (AD) is characterized by the formation of intracellular aggregate composed of heavily phosphorylated

tau protein and extracellular deposit of amyloid-β (Aβ) plaques derived from proteolysis cleavage of amyloid precursor

protein (APP). Autophagy refers to the lysosomal-mediated degradation of cytoplasmic constituents, which plays a critical

role in maintaining cellular homeostasis. Importantly, recent studies reported that dysregulation of autophagy is associated

in the pathogenesis of AD, and therefore, autophagy modulation has gained attention as a promising approach to treat AD

pathogenesis. In AD, both the maturation of autolysosomes and its retrograde transports have been obstructed, which

causes the accumulation of autophagic vacuoles and eventually leads to degenerating and dystrophic neurites function.

However, the mechanism of autophagy modulation in APP processing and its pathogenesis have not yet been fully

elucidated in AD. In the early stage of AD, APP processing and Aβ accumulation-mediated autophagy facilitate the

removal of toxic protein aggregates via mTOR-dependent and -independent pathways. In addition, a number of

autophagy-related genes (Atg) and APP are thought to influence the development of AD, providing a bidirectional link

between autophagy and AD pathology.
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1. Introduction

Alzheimer’s disease (AD) is the most irreversible and progressive brain disorder of neurodegenerative disease

characterized by the accumulation of extracellular amyloid beta (Aβ) leading to the formation of senile plaques and

intracellular tau aggregates that form neurofibrillary tangles (NFTs) in the brain . Approximately, 70% of AD risk is

considered to be inherited and numerous genes are frequently involved, although the actual cause and molecular

mechanisms are poorly understood . Amyloid precursor protein (APP), a transmembrane glycoprotein (type I), is the

key molecular driver of AD pathogenesis. An extracellular domain and a small cytosolic domain present in APP are

generally accepted to be responsible for AD progression . APP is ubiquitously present in the brain and is involved in

building synaptic network as well as regulating neurogenesis . In addition, APP has a modulatory effect on cell surface

receptors and axonal transport. However, the exact functionality of APP still remains elusive . In general, upon its

synthesis in the endoplasmic reticulum, APP undergoes phosphorylation and glycosylation and is finally transported into

the Golgi apparatus. Additional processing of APP occurs in the trans-Golgi-network (TGN), and the highest

concentrations of APP are found in the TGN under normal physiological conditions. Cleavage of APP by α-secretase

produces a soluble molecule, sAPPα, within the Aβ domain , and APP is taken up as a cargo by the

endosomal/lysosomal degradation pathway. Lysosomal degradation is a clearance mechanism required to maintain a

healthy state and to prevent the accumulation of undesirable cellular waste materials. The generated peptides play an

important role in synaptic plasticity and neuronal survival in the healthy state . It has been reported that early-onset AD

(EOAD) is usually inherited with certain autosomal dominant alleles, however, in late-onset AD (LOAD) such inheritance is

unknown. While individuals bearing one inherited copy of the APOE e4 allele have a great risk of developing AD, people

who inherit two copies have a greater risk of AD . In some instances, EOAD is triggered through genetic mutations that

are passed on from parent to child, which is usually known as early onset familial AD (FAD). Generally, FAD occurs due to

mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), and APP genes through β-secretase (BACE-1) and γ-secretase

instead of α-secretase leads to unwanted assembly and accumulation of Aβ peptides in the brain, , thereby causing AD

pathogenesis . Diffusible oligomers and insoluble senile plaques are formed due to the abnormal presentation of Aβ

peptides, thereby resulting in higher neurotoxicity. Moreover, fibrillary plaques are found in the intracellular spaces due to

the aggregation of abnormal Aβ oligomers . Hyperphosphorylation of tau, aggregation of hyperphosphorylated tau to

bind and stabilize microtubules, is related to its aggregation as well as the formation of neurofibrillary tangles (NFTs) and

is considered as a pathological condition of AD . NFTs are formed by intracellular aggregation of hyperphosphorylated

tau protein in specific brain regions . Collectively, the neurotoxic effects of NFTs and Aβ associated with the excessive

accumulation of extracellular plaques in the brain are a hallmark of AD pathogenesis .

[1][2]

[2][3][4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]



Autophagy plays a widespread role in both physiological and multiple pathological conditions, including cancer and

neuronal disorders , and is extensively involved in the pathogenesis of AD . Autophagy, a self-digesting mechanism,

is an intracellular cleansing process characterized by the engulfment of malformed proteins and damaged cellular

organelles by membrane-bound vesicles known as autophagosomes . These autophagosomes subsequently fuse with

the lysosomes to form autolysosomes resulting degradation of dysfunctional materials by lysosomal acid hydrolases .

Autophagy is a complex and tightly regulated enzymatic process that is largely classified into two categories: mammalian

target of rapamycin (mTOR)-independent and -dependent autophagy. A defect in the autophagy-lysosomal pathway has

been linked to AD, which induces the formation of toxic Aβ aggregates and causes cellular apoptosis as well as tissue and

organ damage, culminating in clinical symptoms . In the initial stages of AD, Aβ may induce autophagy to accelerate

their removal process by employing both mTOR-independent and -dependent pathways. Progression of AD deregulates

the autophagy pathway, resulting in the continuous generation of Aβ, which exaggerates both autophagy malfunction and

AD . In addition, both oligonucleotides and proteins, such as miRNAs, transcription factor EB (TFEB), PSEN1, Nrf2,

and Beclin-1 are simultaneously impaired in the regulation of autophagy, which are meticulously interrelated in the

pathogenesis of AD . Therefore, it is evident that the regulation of autophagy is crucial for APP clearance and the

inhibition of AD pathogenesis. Abnormal autophagy is associated with AD pathogenesis; therefore, targeting autophagy

may have a profound role in AD management .

2. Therapeutic Action of APP Triggered by Autophagy

The incidence of AD has posed a global health burden on elderly people and is predicted to increase significantly

worldwide. Considerable effort has been devoted to developing drugs for the treatment of AD, focusing on drug structures

and potential molecular mechanisms of AD. An example of a generally accepted hypothesis is that reduced levels of

acetylcholine causes AD in neurons. However, drugs targeting acetylcholine, the so called “cholinesterase inhibitors”

could poorly improve AD . Therefore, examining other drugs, including potential autophagy regulators might have a

greater potential for the treatment of AD.

2.1. Use of Small Molecules to Modulate Autophagy in AD

The hallmark of AD pathogenesis is the accumulation of amyloid beta proteins and hyperphosphorylated tau, which are

considered toxic to neurons . Dysregulated or insufficient autophagy might be causative factors behind the

development and progression of AD , and therefore, the discovery of drugs targeting autophagy-related signaling

pathways might be an attractive approach for the treatment and management of AD . However, the Autophagy Small

Molecule Database (AutophagySMDB) comprising small molecules is growing gradually. Further, an extensive database

containing numerous target proteins of small molecule modulators that have curated indirect or direct evidence will be

completed in the near future . Moreover, the significance of autophagy in numerous disease states, in addition to

requiring deeper examination of its molecular mechanisms. Kuang et al. has been revealed that several small molecule

autophagy modulators, which may serve as prospective tools for therapeutics of AD  (Figure 1). Sirtuin1 (SIRT1), a

positive regulator of autophagy, increases the expression levels of Atg5, Beclin-1, and LC3-II and accelerates the

clearance of Aβ . In addition, PPARα-mediated activation of autophagy facilitated the clearance of APP and decreased

Aβ pathology in APP/PS1 mice . Treatment with PPARα agonists decreased Aβ levels in the hippocampus and cortex,

and improved autophagosome biogenesis. Together, these observations suggest that PPARα is a critical player involved

in autophagy during Aβ processing . Recently, it has been found that LC3-associated endocytosis assists Aβ clearance

in addition to alleviates murine AD [88] . Spleen tyrosine kinase (SYK) inhibits mTOR signaling with attenuation of tau

accumulation and reduces loss of synaptic function in vitro and in vivo . Small molecule estrogen receptor β (ER) has

been found to promote neuroprotective and tau degradative activity via LC3-II and Atg7 enhancement of extracellular Aβ1-

42 degradation via the autophagy-lysosome system in AD . Orientin increases learning and memory function in addition

to increase clearance of Aβ via the autophagic pathway of LC3-II upregulation as well as p62 and cathepsin D

degradation in an AD mouse model . Additionally, transmembrane p24 trafficking protein 10 (TMED10) has been

described to activate autophagy via ATG4B activation through decreaseing Aβ production in AD patients .
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Figure 1. Implication of several small molecules that modulate autophagy and their mode of action in AD treatment. It has

been mentioned that a single drug may target multiple factors that might be involved in diverse pathological conditions

thereby augmenting treatment efficacy. Additionally, it has been limited negative features of a conventional single-target

drug and combination drugs as well. All the small molecules are used to treat AD via modulation several autophagic

signaling.

2.2. Use of Natural Compounds to Modulate Autophagy in AD

Natural products have been used to treat several neurodegenerative disorders and cancer, and have been targeted as

autophagy inducers . Recent studies have revealed that active compounds in natural products exhibit curative effects

against AD via various mechanisms, including anti-cholinesterase activity, anti-apoptosis, and neuroprotective effects via

anti-oxidation through targeting autophagy . Emerging evidence suggests that natural compounds are attractive

sources of autophagy regulators . Several reports demonstrate that the active compounds regulating autophagy pave a

new therapeutic approach for neurodegenerative diseases . Examples of plant-derived active components that

ameliorate the symptoms of AD by targeting autophagy are summarized in Table 1.

Table 1. Modulation of autophagy by natural products and their therapeutic implication in Alzheimer’s disease.

Natural Products AD Model Activities/Effects Molecular Mechanism References

Dendrobium
nobile Lindl

alkaloid, DNLA

Hippocampus
neurons of Aβ25-35

Protective effects of
axonal degeneration Autophagic flux enhancement

Extra-Virgin Olive
Oil (EVOO) TgSwDI mice Neuroinflammation

reduction AMPK-ULK1 pathway induction

Ginsenoside Rg2 5×FAD transgenic
mice

Removal of Aβ
aggregation

AMPK/ULK1-mediated autophagy
induction

Protopanaxadiol
derivative DDPU

APP/PS1 mice
model

Stimulates the clearance
of Aβ

Inhibition of PI3K/mTOR-mediated
autophagy induction

Berberine 3×Tg-AD mice Promotes the clearance
of Aβ

Activates Bcl2/Beclin1-mediated
autophagy induction

Flavonoids
Silibinin

Aβ1-42-induced rat
model

Attenuates neuronal
damage Inhibits autophagy

Corynoxine B Tg2567 mice, N2a-
SwedAPP cell model

Augments APP and Aβ
degradation

Pathway that induces autophagy is
unknown

Gypenoside XVII APP/PS1 transgenic
mice

Prevents Aβ
accumulation Promotes TFEB to induce autophagy

Ginkgo biloba
extract TgCRND8 mice Improves cognitive

function Induces autophagy

Radix polygalae
extract

Cell model of CHO-
APP/BACE1 Decreases Aβ1-40 levels Activates AMPK/mTOR and promotes

autophagy

Madecassoside D-galactose-induced
mouse model Autophagy inhibition Increases Bcl-2 and decreases Beclin-

1

Hesperetin N2a cell model Increases Aβdamage Autophagy inhibition

Morus alba extract SH-SY5Y cells Autophagy induction mTOR-dependent autophagy pathway
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Natural Products AD Model Activities/Effects Molecular Mechanism References

Wogonin
SH-SY5Y-APP

primary cortical
astrocytes

Enhances Aβ removal Activates ULK1/mTOR and induces
autophagy

Curcumin APP/PS1 transgenic
mice Prevents Aβ deposition Inhibits PI3K/mTOR and induces

autophagy

Resveratrol N2a-APP cells,
HEK293-APP cells

Decreases Aβ
production and

aggregation

Induces autophagy by activating
AMPK/mTOR signaling

Sulforaphane AD model Nrf2 signaling Induces autophagy

Carnosic acid Aβ25-35-induced
SHSY5Y cells

Inhibition of Aβ1-42
aggregation

Activates AMPK/mTOR and induces
autophagy

Tripchlorolide 5×FAD
transgenicmice

Reduces cerebral Aβ
deposits Activates PI3K/mTOR pathway

β-asarone APP/PS1 transgenic
mice Decreases Aβ level Activates PI3K/mTOR and inhibits

autophagy

Oxyresveratrol SH-SY5Y cell model Stimulates autophagy Atg5/7, Beclin-1, and LC-3 induction

18α-Glycyrrhetinic
acid SH-SY5Y cell model Induction of autophagy

flux
mTOR-dependent autophagy

induction

Gintonin
Mouse cortical

Astrocytes,
APPswe/PSEN-1

Autophagic flux
induction, cognition

improvements

Beclin-1, Atg5/7, LAMP-1 induction,
elevation of hippocampal

neurogenesis

Emodin APP/PS1 mice Autophagy inhibition Activates Bcl-2/Beclin-1/PIK3C3
pathway

2.3. Use of FDA-Approved Drugs to Modulate Autophagy in AD

FDA-preapproved as well as approved drugs have the main advantage of being characterized fully for their

pharmacological activity. These kinds of drugs have been shown to be safe in reducing toxicity, possibility of oral

administration, ability to cross the BBB, and half-life are contained within pharmacologically standard. Clomipramine, an

FDA-approved drug used for the treatment of psychiatric disorders, was shown to block the fusion of autophagosomes

with the lysosomes, thus interfering with autophagic flux . Another FDA-approved drug, a benzoporphyrin derivative,

known as verteporfin, is likely to inhibit the formation of autophagosomes in the presence of chloroquine (CQ), a

lysosomal inhibitor . APP 5′ UTR-directed drugs decreased APP levels in SH-SY5Y neuroblastoma cells . As shown

in Figure 2, lower levels of Aβ peptides were achieved by using FDA-preapproved drugs that lowered intracellular APP

holoprotein levels in SH-SY5Y cells have been demonstrated by Morse et al. . The pharmacological action of DMP,

DFO, paroxetine, phenserine, and tetrathiolmobdylate in decreasing the levels of APP and Aβ peptide is shown in Figure

2. Azithromycin dramatically changed the processing of APP . Thus, it has been reported that a subsection of drugs

that have been selected to stimulate APP 5′ UTR-mediated translation is, in addition, coactivators of the non-

amyloidogenic pathway of APP processing. Therefore, it is urgently required to test an increased number as well as more

sophisticated FDA-approved drugs with relative effectiveness in larger group of animals to modulate autophagy in AD

pathogenesis.

Figure 2. Effects on FDA-approved drugs used for the treatment of AD-associated disorders. The therapeutic action of

these FDA-approved compounds has been demonstrated as proof of concept in vivo for selectively reducing APP

expression in AD. All the drugs are shown to reduce APP inhibition.
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