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Salinity is an issue impairing crop production across the globe. Under salinity stress, besides the osmotic stress

and Na+ toxicity, ROS (reactive oxygen species) overaccumulation is a secondary stress which further impairs

plant performance. Chloroplasts, mitochondria, the apoplast, and peroxisomes are the main ROS generation sites

in salt-stressed plants. 
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1. Enzymatic Scavenging System

Protection of chloroplasts from ROS accumulation is very important for stress tolerance in plants. Superoxide

dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) constitute an efficient ascorbate–

glutathione cycle (ASA–GSH, Figure 1), which is a part of the enzymatic antioxidant system of plants . In

chloroplasts, a major ROS-scavenging pathway in plants is the water–water cycle (WWC). WWC can protect

enzymes in chloroplasts and PSI from ROS and dissipate excess light energy in plant cells .

Figure 1.  Ascorbate–glutathione cycle in plant cells. The reduced form of ascorbate (Asc) is oxidized to

monodehydroascorbate (MDHA), which can either be reduced by monodehydroascorbate reductase (MDHAR) to

Asc, or react to dehydroascorbate (DHA). DHA can be reduced by dehydroascorbate reductase (DHAR) to Asc.
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The reduced form of glutathione (GSH) is oxidized to glutathione disulfide (GSSG), which is reduced by glutathione

reductase (GR) to GSH. During the reduction of MDHA and GSSG, the electron acceptor NADP is regenerated.

(1) 2H O → 4[e ] + 4H  + O  (The photolysis of H O in PSII);

(2) 2O  + 2[e ] → 2 O  (Photoreduction of O  in PSI);

(3) 2O  + 2H  → H O  + O  (SOD catalyzes O  disproportionation);

(4) H O  + 2AsA → 2H O + 2MDA (APX catalyzes ASA reduction H O );

(5) 2MDA + 2[e ] + 2H  → 2AsA.

Total: 2H O + O  → O  + 2H O.

A previous study indicated that optimum exogenous selenium enhanced the activity of POD and APX, which

ultimately protected chloroplasts from auto-pepsia and resulted in a higher photosynthesis rate in maize crop

grown under salt stress . Transcriptomic and metabolomic analyses revealed that genes encoding LEA (late-

embryogenesis-abundant) proteins are up-regulated under salt stress. It is evident that LEA proteins could

enhance the antioxidant enzyme activities . It is evident that halophytes have a stronger enzymatic antioxidant

system (CAT and SOD), and this capability has been used as a selection criterion for salt-tolerant varieties .

A previous study reported that SOD converted salt-induced ROS into H O , and APX maintained H O   at an

optimum level as a signal molecule . The study also revealed the importance of PaSOD (superoxide dismutase)

and RaAPX (ascorbate peroxidase) gene in plant salt tolerance, which could enhance the biosynthesis of

compatible solutes and lignin. Overexpression of mitochondria-located protein 4-hydroxybenzoate polyprenyl

diphosphate transferase (PPT) increased the ubiquinone content and enhanced the plant’s salt-tolerance.

Glutathione peroxidase (GPX) is an important component of the ASA–GSH cycle. The ASC (ascorbate)/GSH cycle

is also an important antioxidant system in plants. A study on the glycophyte  Brassica juncea  and the

halophyte Sesuvium portulacastrum indicated that the ASC/DHA (dehydroascorbate) and GSH/GSSG (glutathione

disulfide) ratios were maintained in  B. juncea  but increased in  S. portulacastrum  . By using OsGPX3-RNAi

silenced plants, researchers found that GPX had an important role in plant CO   assimilation, biomass

accumulation, and PS II protection under salt stress . Interestingly, OsGPX3-RNAi silenced plants displayed no

observable difference with untransformed plants in ROS accumulation, suggesting a complex role for GPX in plant

response to salt tolerance . In addition, the gene related to alternative oxidase (AOX) located in the inner

membrane of mitochondria has been reported, and is believed to be involved in the response to abiotic stress .

2. Non-Enzymatic Scavenging System

Several highly toxic ROS, such as  O  and  OH, cannot be scavenged by enzymatic antioxidant systems. Thus,

plants depend solely on non-enzymatic means to scavenge those ROS. Generally, ROS lead to lipid peroxidation
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 and an increase in monodehydroascorbate (MDA) content . Overexpression of IbWRKY2 induced MDA

accumulation in plant cells, coupled with ROS-scavenging genes up-regulation, resulting in improved salt tolerance

. Carotenoids and α-tocopherol, as components of non-enzymatic antioxidant systems, can also scavenge ROS.

For example, carotenoids are distributed in the thylakoid pigment—protein complexes in close proximity to

chlorophylls near the potential sites of  O  formation. Furthermore, melatonin is considered a small molecule that

may scavenge ROS, and the “manager” in plants under salinity stress. For example, a previous study found that

the gene related to the melatonin synthesis enzyme N-acetylserotonin O-methyltransferase (MzASMT9), which is

localized in the chloroplast, is upregulated by salt stress . Additionally, MTs (metallothioneins) interact with

AtVDAC3 (mitochondrial membrane voltage-dependent anion channels) and regulate ROS homeostasis .

Flavodoxin is known as an electron transfer shuttle, and can drive reducing equivalents away from oxygen,

preventing ROS generation . However, interestingly, compared with the enhanced tolerance to drought, excess

irradiation, temperature stress, and iron starvation, overexpression of the plastid-targeted cyanobacterial flavodoxin

in tobacco plants failed to result in increased salt resistance .
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