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Antisense and small interfering RNA (siRNA) oligonucleotides have been recognized as powerful therapeutic

compounds for targeting mRNAs and inducing their degradation. However, a major obstacle is that unmodified

oligonucleotides are not readily taken up into tissues and are susceptible to degradation by nucleases. For these

reasons, the design and preparation of modified DNA/RNA derivatives with better stability and an ability to be

produced at large scale with enhanced uptake properties is of vital importance.

antisense oligonucleotides  siRNA  lipid-oligonucleotide conjugates

1. Introduction

Over the last decade, therapeutic oligonucleotides have gained momentum as an approach to drug development;

consequently, there has been a large development of the field. Although the first oligonucleotide approved for

therapeutic application in humans dates back to 1998 , the recognition of their full therapeutic potential started in

2016 with the authorization of Spinraza , for the treatment of Spinal muscular dystrophy, and Etiplersen , for the

treatment of Duchenne muscular dystrophy. In both cases, the possibility of targeting a mutated gene through

alternative splicing became a major success for a long-time dream. Since then, the list of oligonucleotides

approved for human practices has reached the dozens, especially with the incorporation of siRNAs in the

therapeutic arena .

Oligonucleotide therapeutics include antisense oligonucleotides (ASOs) , small interfering RNAs (siRNAs) ,

aptamers , microRNAs , and others . ASOs are small single stranded nucleic acids that by complementarity,

bind to a particular mRNA and form a hybrid molecule to modulate gene expression. They act through two

mechanisms of action (a) by steric blockade at the ribosomes or (b) by recruiting RNase H enzyme that catalyzes

the degradation of mRNA . On the other hand, siRNAs consist of 21–23 mer RNA duplex formed by a sense and

an antisense strand complementary to mRNA. The latter is responsible for the recruitment of the target transcript

into the RNA-induced silencing complex (RISC) that leads to gene silencing . Unmodified oligonucleotides are

not readily taken up into tissues and are also susceptible to degradation by nucleases. For these reasons, the

design and preparation of more stable modified DNA/RNA derivatives to improve the existing limitations, like

inefficient delivery and mature to the position of clinical utility, is of key importance. Regarding the nuclease

resistance, novel derivatives are being developed . The delivery issue is being addressed by the following

approaches: by encapsulation in nanomaterials such as solid lipid nanoparticles (SLNs) or by preparing novel

oligonucleotide conjugates with selective targeting moieties . The first FDA-approved siRNA, Onpattro , is the
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paradigm of the former; N-acetylgalactosamine (GalNAc) oligonucleotide conjugates  are the paradigm of the

latter. GalNAc oligonucleotide-conjugates have been shown to be delivered to hepatocytes by binding to

asyaloglycoprotein receptors . The latest FDA-approved therapeutic siRNAs, including Givosiran , Lumasiran

, Inclisiran , Vutrisiran , are based on this strategy. Importantly, Inclisiran (Leqvio ) exerts its therapeutic

action within a twice-yearly administration regime  while most of the therapeutic siRNAs are administered

monthly or every two months . The large duration of the therapeutic effects of Inclisiran is not only due to a

combination of the stability achieved by the modifications on the siRNAs and the efficacy in the delivery, but also to

the efficient inhibition of the proprotein convertase subtilisin kexin type 9 (PCSK9) .

The success in exploring oligonucleotide conjugates for hepatic delivery has triggered an intense quest for

oligonucleotide conjugates with tissue-selective targeting properties, particularly for extrahepatic delivery .

2. Early Developments in the Synthesis of Lipid-
Oligonucleotide Conjugates

The pioneering works on the antiviral activity of oligonucleotides  stimulated the development on lipid-

oligonucleotide conjugates as potential candidates for the inhibition of the human immunodeficiency virus (HIV-1) in

cell culture. Cholesterol was first selected to enhance the interaction between oligonucleotides and cell

membranes, which increases the antiviral activity of the oligomers . Letsinger’s group designed a synthetic

protocol based on the solid-phase oxidation of H-phosphonate dinucleotide intermediates with amino-functionalized

cholesterol and catalyzation by carbon tetrachloride, which generated the desired cholesterol-oligonucleotides

bond through a phosphoramidate link (Figure 1A)  or by direct coupling at the 5′-termini with the H-phosphonate

derivative of cholesterol . The H-phosphonate derivative of a diacylglycerol was also used for the

incorporation of 1,2-di-O-hexadecyl-rac-glyceryl residue at the 5′-end of antiviral oligonucleotides . Solution

techniques using amino-lipids  or thiocholesterol  were also used for conjugation in order to generate

physiologically-labile ester  or disulfide  bonds between the lipid and the oligonucleotide. These

groundbreaking studies proved the utility of lipid-oligonucleotides by demonstrating that the lipid moiety enhances

nuclease resistance and maintains or improves hybridization properties . However, in some cases, antiviral

properties groundbreaking antisense inhibition rules suggest other mechanisms, such as binding to viral and/or cell

membranes .

The next step was the development of specific lipid-phosphoramidites and lipid-functionalized solid supports

(Figure 1B). Due to the lability of the ester bonds to ammonia , they were replaced by ether, amide and

urethane linkers. Several derivatives carrying ether and glyceryl ether bonds were developed by the group of Tom

Brown, including 3′ and 5′-cholesteryl, 5′-(1,2-dihexadecylglyceryl), 3′ and 5′-hexadecyl, 5′-octadecyl and 5′-

adamantyl  as well as vitamin E derivatives (Scheme 1) . Other groups worked on new cholesterol derivatives

containing aminodiols such as 3-amino-1,2-propanediol  and 3-aminopropylsolketal , in which the

cholesterol moiety was linked to the amino group by reaction with cholesterol chloroformate generating an

urethane bond stable to ammonia.
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Figure 1. Synthetic approaches for the incorporation of lipids to the 5′ and 3′ end of an oligonucleotide. (A) H-

phosphonate  and phosphoramidite chemistry  and (B) Different cholesterol functionalized solid

supports .

On the other hand, postsynthetic conjugation reactions between amino-oligonucleotides and carboxylic acid

derivatives of lipids such as cholic acid, adamantane acetic acid and fatty acids were described . A

variation of this protocol implies the addition of 9-fluorenylmethoxycarbonyl (Fmoc)-protected amino linkers into

oligonucleotides. After the assembly of the sequence, the Fmoc moiety can be removed generating a free amino

group that reacts with cholesterol chloroformate followed by standard ammonia deprotection .
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Scheme 1. Structure of several lipid-oligonucleotide conjugates .

The availability of lipid-oligonucleotides allowed its preclinical evaluation demonstrating specific antisense activity,

enhanced nuclease resistance and maintenance or improvement of hybridization properties . Another

interesting property is its capability to bind to serum proteins and lipoproteins, which is important to avoid renal

clearance of oligonucleotides . Several specific receptor-mediated uptake mechanisms have been described to

explain selective uptake by hepatocytes via lipoprotein receptors . Although lipid-oligonucleotide conjugates

have interesting properties, none of them, except polyethyleneglycol (PEG) derivatives, have found their way to

clinical studies. The synthesis of oligonucleotides functionalized with PEG has been described by the Erdmann and

Bonora groups, being somehow similar to the methodology described herein for other lipid diols .

Pegaptanib (Macugen ) is a therapeutic oligonucleotide used for the treatment of aged-associated macular

degeneration. This oligonucleotide is an aptamer constituted by 28 nucleotides and functionalized with PEG at the

5′-end and an inverted-T at the 3′-end to prevent degradation by nucleases . This aptamer has a strong affinity

to the vascular endothelial growth factor VEGF165 (Kd = 49 pM), inhibiting the binding of VEGF to its receptor,

suppressing the VEGF-mediated angiogenesis and consequently lowering vascular permeability and inflammation

.

3. Lipid-Oligonucleotide Conjugates and the Development of
RNA-Based Therapeutics

The discovery of the RNA interference mechanisms provided a great resurgence in the area of therapeutic

oligonucleotides. Soon after the work of Mello and Fire , it was established that the effector molecules of the

RNA interference process were double stranded RNA molecules of 19–21 nucleotides. Then, synthetic
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oligonucleotides with chemical modifications were proved to improve the efficacy and the duration compared to

natural substrates . Later, the discovery of the microRNAs increased the therapeutic potential of

oligonucleotides . Cholesterol-siRNAs were developed and were demonstrated to be successful derivatives for

the inhibition of lipoproteins . Stable nucleic acid lipid nanoparticles (SNALP) and solid-lipid nanoparticles (SLN)

were developed for the delivery of siRNAs  showing for the first time the in vivo inhibition of ApoB in non-

human primates . To expand the arsenal of available cationic lipids for siRNAs delivery, several lipids and lipoids

libraries were screened, thereby generating lipids with high efficiency and less toxicity .

These studies led to the search for new hydrophobic molecules to enhance the cellular uptake of siRNAs 

. Conjugation of amino-siRNAs with a small library of carboxyl-lipids including cholesterol, fatty-acids and bile

acids resulted in hydrophobic siRNA derivatives that interact with lipoproteins . The obtained hydrophobic (lipo-

siRNA-protein) complexes were efficiently delivered to liver, gut and kidney by specific lipoprotein-mediated

receptors. Inspired by these results, researchers studied a small lipid library including both neutral  and cationic

lipids . The study of TNF-alpha inhibition with and without lipofectamine proved that these lipid-siRNA

conjugates carrying ammonia-resistant glycerol ether bonds were compatible with RNA interference mechanisms.

A lipid carrying two linear hydrocarbon chains was the best derivative in terms of increasing cellular entrance

(Scheme 1) . These double-chain lipid-siRNA conjugates stimulated the formation of small vesicles that may

explain the improved uptake properties . In addition, a good correlation was found among cell lines

expressing abundant CR3 receptors . The vesicle formation properties and the enhanced binding of siRNAs

carrying double-chain lipids to hydrophobic membranes has also been observed by several authors .

Furthermore, researchers found that the sonication of lipophilic siRNA in presence of serum enhanced the binding

of lipophilic-siRNA to lipoproteins, resulting in a more efficient transfection .

In a different approach, cholesterol-conjugated single-stranded short RNA molecules, or antagomiRs, were

successfully used to silence miRNA . In addition, G-quadruplex-forming oligonucleotides carrying lipid

moieties were found to increase their affinity for viral membrane proteins showing antiviral properties by inhibition

of viral cell entry . The most frequent methodology for the preparation of oligonucleotide-lipid conjugates is

based on amide formation (Figure 2), but other reactions such as the copper catalyzed azide-alkyne cycloaddition

(click chemistry) have also been reported .
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Figure 2. Chemical structure of several linker molecules connecting solid supports and lipids used for the

preparation of lipid-oligonucleotide conjugates. (A) Lipid conjugation to the 5′ or 3′ end of an oligonucleotide in

solution . (B) Lipid conjugation to the 5′ or 3′ terminus of an oligonucleotide on a solid support .

Recently, studies have been addressed towards the application of lipid-oligonucleotides to transfect cells and

tissues other than liver. Primary neurons are difficult to transfect with siRNAs because the unique nature of the

blood brain barrier (BBB) and the difficulty of direct administration . Alterman et al. found that cholesterol-

tetraethyleneglycol functionalized siRNA at the passenger strand was efficiently internalized in primary cortical

neurons, inducing a potent and specific silencing of huntingtin gene . This potent silencing activity was

maintained in vivo when injected into mouse brain . Additionally, docosahexaenoic acid conjugation (Figure 3)

was judged to increase further the distribution and the inhibitory properties of lipid-siRNAs when administered into

the brain .

Another interesting property of lipid-siRNAs is the enhancement of siRNA loading into extracellular vesicles ,

which generates attractive nanoparticles for the delivery of therapeutic siRNAs. The best option in terms of higher

loading and efficiency was the conjugation of vitamin E (Sheme 1) . Recently, siRNAs were modified with

vitamin E by a benzonorbonadiene linker, which releases active siRNAs when reacting with tetrazines .

Next, the distribution of siRNAs conjugated to a small library of complex lipids was analyzed, including saturated

and unsaturated fatty acids, steroids and lipophilic vitamins with or without phosphocholine heads. The level of

hydrophobicity is critical in order to define accumulation in the liver or in the kidney. In addition, it was shown that

some lipid derivatives were able to accumulate in non-hepatic tissues such as lung, muscle, heart, adrenal glands

and fat . In more detailed studies, factors such as the chemical structure of the lipids , the

phosphorothioate content , the presence of single-stranded phosphorothioate regions  or the valency of fatty

acid modifications  were demonstrated to affect the pharmacokinetics, the extrahepatic distribution and the in

vivo efficacy of lipid-siRNAs . Recently, the in vivo properties of siRNA carrying 2′-O-hexadecyl (C16)
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moieties have been described (Figure 3). These lipophilic siRNAs can be delivered into the central nervous

system, eye and lungs of rats and non-human primates, where they exert inhibitory properties for at least 3 months

. These results opened the possibility of using lipophilic siRNAs in the treatment of Alzheimer’s disease.

Figure 3. Structure of four different lipid-siRNAs that have been successfully delivered to different cell types and

organs .

A systematic study on the effect of the conjugation of antisense oligonucleotides with fatty acids confirms its

potential delivery to muscle and other extrahepatic tissues . Moreover, palmitic acid-, tocopherol-, and

cholesterol-conjugated (Scheme 1) antisense oligonucleotides were reported to increase protein binding and

enhance intracellular uptake . These properties were explored by several groups for the development of lipid-

antisense oligonucleotides targeting the exon 51 of human Duchene Muscular Distrophy gene .

The development of mRNA vaccines, especially during the COVID-19 pandemic, triggered the interest in lipid

nanoparticles for mRNA delivery. The approval of Onpattro for the treatment of transthyretin–mediated amyloidosis

demonstrated the efficacy and safety of these non-viral vectors for siRNA delivery to liver . This approval

facilitated the rapid authorization of the two mRNA vaccines for SARS-CoV-2 . The great potential of mRNA
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vaccines for cancer, infectious diseases and genetic disorders is stimulating the search for the next generation of

lipid nanoparticles that would increase efficacy, degradability  and tissue-specificity properties .
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