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Eusocial ants (family Formicidae) engage in a broad range of social behaviors such as nursing the queen’s
offspring, foraging for food, and defending their nest. Importantly, these behaviors critically depend on the
exchange of information through the detection of chemical cues by a sophisticated olfactory system comprising
among the largest number of odorant receptors (ORs) of any insect.

Hymenoptera Formicidae ants eusocial olfaction odor coding review

| 1. Introduction

From an evolutionary perspective, ants are an extraordinarily successful insect taxon that are globally pervasive
and comprise more than a quadrillion individuals . This success is likely due to the complex eusocial structure
and sophisticated olfactory system that drives collective behavior among individuals throughout a colony (Figure 1).
Without centralized control, sterile female workers tend to the queen’s offspring (“nurses”), construct and maintain
nests (“builders/midden workers”), defend and police the colony (“soldiers”), and search for food (“foragers”).
Beyond these fundamental tasks, which are commonly observed across eusocial insect taxa, the social life of
certain ant species may be quite extraordinary. Attine ants rely on the collection of leaves that they use as a
substrate to maintain elaborate fungal gardens [&. Army ants create living nests with their bodies, known as
bivouacs, where they shelter the queen and store food and brood among the interior chambers Bl. When selecting
a new nest site, rock ants engage in a democratic decision-making process that relies on quorum sensing 2. To
accomplish these impressive feats, ants rely largely on sophisticated chemical communication systems that

provide an extraordinary degree of discrimination and sensitivity .
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Figure 1. The regulation of complex social behaviors in ant colonies relies on the transmission and detection of
chemical information among discrete castes and worker groups, including reproductive “queen(s)” (red circle),
brood-care “nurses” (white circle), cleaning “midden workers” (blue circle), food collecting “foragers” (yellow circle),

aphid-tending “farmers” (purple circle), and colony defending “soldiers” (orange circle).

Ants communicate with one another by exchanging an array of chemical messages that includes general odorants
common to many insects, as well as the social pheromones and other chemical blends that distinguish ants from
other, solitary insects. Many of these messages are detected via olfactory signal transduction pathways largely
localized to the antennae . Complex blends of cuticular hydrocarbons (CHCs), as an example, are an especially
important class of semiochemicals that convey a broad range of social information including colony membership,
fertility, and task group 8. In the course of a brief antennation event, where ants make mutual contact with their
antennae, an ant can identify a foraging nestmate or an intruding non-nestmate based on their respective CHC
profiles Il CHCs are produced by oenocytes associated with the fat body B2 and it is believed that the
post-pharyngeal gland plays a central role in storing and distributing the hydrocarbons involved in colony identity

(12 |ndeed, there are considerable qualitative and quantitative similarities between the contents of the post-
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pharyngeal gland and CHC profiles [13]. Taken together, these studies highlight only a small fraction of the complex

pheromone biochemistry responsible for the organization and coordination of ant societies.

Over and above the role of CHCs, ants have been described as “walking chemical factories” because they rely on
a large array of exocrine glands that collectively produce the semiochemical releasers for many complex social
behaviors [. For example, in Formica argentea, undecane is produced in high concentrations in the Dufour’s
gland, where it is likely to act as an alarm pheromone component 24l |n addition to its role in predation and
defense, the poison gland of Formicidae produces formic acid, which may act synergistically with other compounds
that elicit alarm responses in the Dufour’s gland 1218 Even more notorious is fire ant venom, which is comprised
of hydrophobic dialkylpiperidines, known as solenopsins, used for predation and defense 4. Moreover, even
closely-related species may have strikingly different exocrine gland composition. This is illustrated in studies that
examined the phylogenetic relationship of Camponotus floridanus to C. atriceps, one which was contested for a
time with some suggesting that the two species were synonymous 18, However, the ratio of compounds in the
Dufour’s gland was observed to be notably different, with certain compounds, such as 2-methyldecane and
heneicosane, present in only one species or the other 22, This distinct phylogeny is also consistent with studies
demonstrating that trail-following behaviors are evoked by distinct hindgut components found in each species. In
this regard, C. floridanus is sensitive to nerolic acid, while C. atriceps relies on 3,5-dimethyl-6-(1’-methylpropyl)-
tetrahydropyran-2-one 19, |n short, there is tremendous diversity of exocrine gland form and function among ants,

including glands that may elicit behaviors that are unique to a given genera [,

| 2. The Peripheral Olfactory System

The complex array of sensory neurons and support cells that together make up the peripheral olfactory system is
the initial site of chemical detection and perhaps discrimination in ants. Here, pheromones, kairomones, and other
semiochemicals are detected by an array of membrane-bound chemoreceptors expressed in suites of olfactory
sensory neurons (OSNs). The function of these OSNs relies on a spectrum of signal transduction pathways that
comprise both extra- and intracellular components centered around three classes of transmembrane
chemoreceptors: ORs, gustatory receptors (GRs), and ionotropic receptors (IRs) (for a detailed discussion of these
and other chemoreceptor proteins involved in Hymenopteran olfactory biology, we direct the reader to ). In brief,
individual ORs are expressed in a subset of OSNs alongside the obligate and highly conserved odorant receptor
co-receptor (Orco) 29, The ORs are involved in the detection of pheromones and other general odorants which for
ants notably include the CHCs 2122 ORs are hypothesized to derive from GRs, which are the most ancient
chemoreceptor family in insects and, at least in Drosophila, are responsible for the direct (contact-based) detection
of tastants as well as carbon dioxide [23l. Curiously, while empirical evidence suggests that ants are able to detect
carbon dioxide [24(23l26] they have lost the canonical CO, receptors found in dipteran species 2428 The IRs are
derived from ancestral glutamate receptors and form an independent lineage of chemoreceptors that are, in
Drosophila, responsible for the detection of acids and aldehydes 292031 Beyond these primary chemoreceptor
families, there are a number of other ancillary support proteins involved in olfactory signaling. These include

odorant degradation enzymes (ODEs) and a variety of odorant binding proteins (OBPs) and chemosensory
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proteins (CSPs). The former, as their name implies, facilitate the degradation of odorants 32331 while the function
of the latter is not as well understood. However, it is commonly thought that the OBPs and CSPs may facilitate odor

transport through the sensilla lymph B4l although they are evidently not required for olfactory responsiveness 22
1381,

The OSNs subtend hair-like sensilla that are stereotypically distributed along the antennae and other
chemosensory appendages 7. For ants, there are several different types of sensilla that vary in function,
innervation, and morphology 82, These notably include basiconic (broadly chemoreceptive including CHCs),
ampullaceal (putatively CO, receptive), chaetic (contact-based chemosensation), coelocapitular (hygro- and
thermoreceptive), coeloconic (chemoreceptive), and trichoid (chemoreceptive) sensilla. In contrast to the relatively
simple Dipteran olfactory system, which may have only a handful of OSNs in each sensillum, ant sensilla may
contain over 130 OSNs B8 |n addition, there are important sexual dimorphisms with respect to the broad
morphology of the antennae and the composition of sensilla between female and male ants. The basiconic sensilla,
which presumably house the OSNs involved in CHC detection 2241 gre notably absent in males and likely reflect
the distinct physiological function of behavior of the different members of the colony [B8l42l143]  Ajtogether, the
peripheral olfactory system in ants shares many features in common with other insect species; however, evolution
has produced an unparalleled level of complexity in ants that is unrivaled even by their much more studied

Dipteran counterparts (Figure 2).
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Figure 2. Ants and other eusocial Hymenopteran have a remarkably complex olfactory system relative to fruit flies
and other solitary insects. Ant sensilla (S) may contain OSNs that are up to two orders of magnitude more
numerous than those of the fruit fly. The antennal lobe (AL) glomeruli are also more numerous and follow a
different developmental trajectory. Odor processing in higher-order brain structures, including the mushroom

bodies (MB) and lateral horn (LH), occurs through a novel dual-olfactory processing pathway.

| 3. Central Olfactory System
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3.1. An Overview of the Central Olfactory System in Insects

At a cellular level, the fundamental organization of the olfactory system is remarkably similar between vertebrate
and insect species 4443 Across this broad evolutionary distance, diverse OSNs residing in an aqueous milieu
receive chemical messages from the environment, and this information is relayed to the central brain via dedicated
axonal tracts, converging on secondary neurons, local interneurons, and glial cells that together constitute the
neuropil which forms the stereotypic glomeruli of the vertebrate olfactory bulb ortholog known in insects as the
antennal lobe (AL) 8471 until recently, it was doctrine that a single glomerulus was typically innervated by a
specific corresponding set of peripheral OSNs, many of which express the same chemoreceptor 48149 There may,
however, be important exceptions to this rule as emerging studies from Drosophila and the yellow fever mosquito
Aedes aegypti reveal that a single OSN may co-express receptors from different chemoreceptor families and are
linked to multiple AL glomeruli BY51, |n any case, having arrived at their respective (or collective) AL glomeruli,
synaptic connections relay information to a collection of secondary glomerular neurons, known in insects as AL
projection neurons, which are comparable to vertebrate olfactory bulb mitral and tufted cells. The initial processing
of peripheral olfactory information that eventually leads to odorant discrimination and presumably perception
occurs through the combinatorial activation of glomeruli that is transformed through integrative (often inhibitory)
crosstalk between glomeruli via local interneurons 2253154155561 projection neurons subsequently connect the
olfactory bulb or AL to the olfactory cortex and other central brain structures in vertebrates or, in the case of
insects, to the mushroom bodies and lateral horn of the protocerebrum 871 |n ants and other Hymenoptera,
projection neurons are organized into a unique, dual olfactory pathway consisting of a medial and lateral output
tract connecting to higher order brain structures which may improve olfactory information processing (Eigure 2) &7
(58], These structures are then responsible for more complex cognitive processes. It has been suggested that insect
mushroom bodies are responsible for learning and memory B89 whereas the lateral horn may play a role in
learned and innate behavioral responses [611,

3.2. Structure and Function of the Antennal Lobe

While there are indeed many parallels between the insect and vertebrate olfactory systems, there are also notable
differences in terms of scale, structure, and function. Mice have well over 1000 olfactory bulb glomeruli which,
following the oft-cited, “one-receptor-one neuron-one glomerulus” rule (82831 derives from a correspondingly
similar number of ORs 841631 |n contrast, Drosophila maintain 62 ORs and a comparable number of AL glomeruli
(491661 As one might expect given their significantly larger OR repertoires, the complexity of ant ALs falls
somewhere in between—the clonal raider ant Ooceraea biroi, for example, has approximately 500 glomeruli 2
whereas leaf-cutting Atta vollenweideri have about 390 among the smaller worker caste and 440 among the larger
workers 84, Importantly, the precise composition of the AL in ants and other eusocial Hymenopteran varies
dramatically among different colony members within a given species with respect to age, task, and morphology 7
[68I69[70[71] previous experience and exposure to different environmental conditions may also lead to changes in
glomerular volume, odor coding, and behavior [Z2. A distinct group of larger Camponotus workers (“majors”) have a
correspondingly larger glomerular volume but fewer glomeruli than minor workers 1. By contrast, larger workers

in the leaf-cutting ant A. vollenweideri have a greater number of glomeruli than minor workers 2. Interestingly,
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high volume macroglomeruli, which are about 9-10 times larger than average glomeruli, have also been identified
in the larger worker caste of leaf-cutting ants, and these may be responsible for the detection of trail pheromones
(73], Furthermore, the ALs display profound sexual dimorphisms. In C. japonicas, sterile female workers and virgin
queens have roughly 430 glomeruli, whereas the AL of males is reduced to only 215 glomeruli 4. In C. japonicas,
as well as other Hymenopteran species such as the honeybee Apis mellifera, males also have larger
macroglomeruli structures, which are thought to be involved in the detection of sex pheromones 43Z4I7SI76][77],
These male-specific characteristics may reflect their marginalized role as short-lived reproductives. Overall, these
changes likely reflect the unique behavioral and reproductive tasks carried out by different members of an ant

colony.

The detection of social cues including pheromones and chemical blends such as CHCs distinguish ants and other
eusocial species from solitary insects; however, it is noteworthy that odor coding in the AL is conserved across a
broad evolutionary distance. Across insects and mammals, for example, the neuronal representation of general
odorants among the AL glomeruli are organized and structured around distinguishing features of a given chemical
class, including chain length and functional groups 8, and these activation patterns are consistent across
members of a given species B8IZ3 \While glomerular activation patterns for both pheromones and non-pheromone
odorants may overlap in ants 288 other studies have shown discrete clusters of glomeruli responsible for the
detection of alarm and trail pheromone signals 381 and this is consistent with studies conducted in moths, which
have dedicated macroglomerular complexes involved in the detection of sex pheromones 2 in addition to ordinary

glomeruli that process both general plant volatiles and sex pheromones 83,

3.3. Olfactory Sensory Neurons and the Ontogeny of the Antennal Lobe

Another notable difference between the insect and vertebrate olfactory systems concerns the relationship between
diverse sets of OSNs and the ontogeny of the AL glomeruli. In Drosophila, AL development occurs through three
phases that begin at the start of pupation when dendrites from second-order projection neurons arrive at
stereotypic sites in the brain 4. In the second phase, OSN axons from peripheral olfactory appendages arrive at
target sites in the proto-antennal lobe. This second phase notably occurs prior to OR gene expression and, not
surprisingly, there are no significant structural alterations to the glomeruli of orco null mutant Drosophila 83,
Furthermore, OSNSs survive through development but degenerate later in adulthood. This is in contrast to mice and
other mammals, where functional ORs and OSNs are required for proper axon targeting 88 and are capable of
regeneration (7. In the final phase, fruit fly projection neurons and the axons from OSNs establish local synaptic

connections to the exclusion of neighboring cells to create discrete glomeruli.

Arguably, the most compelling distinction about the olfactory system in ants compared to fruit flies and mosquitoes
was the recent observation that Orco is required for the proper development of the AL glomeruli (8189 This rather
unexpected difference in ant brain development was first described in two parallel reports using CRISPR-Cas9
gene editing to knock out Orco in the jumping ant Harpegnathos saltator 8 and the clonal raider O. biroi B2, In
addition to a profound loss of olfactory sensitivity, as well as the alteration of several behavioral phenotypes that

were both anticipated, orco mutant ants displayed significant reductions in both OSN populations and the number
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and volume of AL glomeruli. More recently, AL development in O. biroi has been closely examined during the
critical two-week pupation period 29, In contrast with Drosophila 2, OR expression occurs much earlier in ant
development, before the formation of glomeruli 22, Indeed, Orco expression was high on the first day of pupal
development, and almost all of the nearly 500 ant ORs were expressed by day 2 of the pupal stage. Moreover,
while Orco is localized to the dendrites and cell bodies of fruit fly OSNs 831 in the clonal raider ant, it is also found
in OSN axons and axon terminals in the brain. Here, unilateral antennal ablations (that impact only the ipsilateral
half of the bilaterally symmetric ALs) on the first day of pupation resulted in significantly reduced glomeruli in adults.
When antennae were ablated later in pupation, development was arrested, but any glomeruli that had already
formed survived to adulthood. When antennae were ablated in adult callow workers, AL glomeruli remain for at
least two weeks. Taken together, this suggested that orco mutants have impaired AL development due to loss of
OSNs, which were necessary for the formation of glomeruli but not their maintenance. Curiously, approximately 90
glomeruli survived both the ablation treatment and in the orco null mutant BB The authors suggested these

remaining glomeruli may be a more basic template upon which the remainder of the more complex AL forms.

Developing a topographical map of the AL in ants, as is being done in the honeybee 21l would catalyze the effort
to provide a better understanding of odor coding in the glomeruli. These insights may shed light on the role of the
mysterious 90 surviving glomeruli, if they have a function at all, and how their development may differ from the
remainder of the AL. Ultimately, however, we are left with more questions than answers. This is especially so in
light of recent studies in fruit flies and mosquitoes demonstrating that subsets of olfactory neurons co-express ORs,
IRs, as well as potentially other receptor classes BUBL  Such polymodal neurons display non-canonical
relationships to the AL that upset the “one receptor-one neuron-one glomerulus rule” and provide a fruitful avenue

for future research.

4. Genomics, Evolution, and the Regulation of
Chemosensory Genes

Over the past decade, considerable progress has been made toward understanding olfactory genomics in eusocial
insects 2. During this time, more than 50 Hymenopteran genomes have come online, and sequencing efforts for
many more are currently underway 2293l One of the most notable scientific discoveries resulting from this ever-
growing repository of genomic data was the identification of significant changes in the chemoreceptor families 27
[94][95][96][97][98][99NI00N[101] - gpecifically, there has been a massive expansion of ORs through gene birth-and-death

evolution across Apocrita that directly correlates to the degree of eusociality 2724 Among these, ants boast the
largest number of ORs. Genome sequencing across the evolutionarily basal suborder Symphyta, which is devoid of
any eusocial species, has been considerably more limited. One bioinformatics study completed thus far in
Symphyta has revealed that the genome of the solitary wheat stem sawfly Cephus cinctus has not undergone the
same expansion of ORs as seen in Apocrita [2021. A notable exception to the eusocial-driven expansion of OR gene
families is the genomes of several species of solitary wasps, including Nasonia vitripennis and Microplitis
demolitor, each of which have more ORs than that of the eusocial honeybee A. mellifera 241931 | ooking at

chemoreceptors beyond ORs, the genome of the dampwood termite Zootermopsis nevadensis has a greatly
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expanded family of IRs 194l Similarly, cockroaches have the largest number of chemoreceptors of any insect

species described to date, with massive expansions of the IR and GR families 193, While insufficient to fully

explain the macroevolution of eusociality, the expanded capacity to detect and communicate chemical information

likely facilitated the acquisition of the broad range of social behaviors that doubtlessly also provided an adaptive

advantage across diverse environments. These early genomic studies in Hymenoptera provided a clear sense of

direction for future research spurred by the concurrent development of molecular tools in eusocial insects.
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