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Recent data suggest that post-ischemic brain neurodegeneration in humans and animals is associated with the modified

tau protein in a manner typical of Alzheimer’s disease neuropathology. Pathological changes in the tau protein, at the

gene and protein level due to cerebral ischemia, can lead to the development of Alzheimer’s disease-type neuropathology

and dementia. Some studies have shown increased tau protein staining and gene expression in neurons following

ischemia-reperfusion brain injury. Recent studies have found the tau protein to be associated with oxidative stress,

apoptosis, autophagy, excitotoxicity, neuroinflammation, blood-brain barrier permeability, mitochondrial dysfunction, and

impaired neuronal function. In this review, we discuss the interrelationship of these phenomena with post-ischemic

changes in the tau protein in the brain. The tau protein may be at the intersection of many pathological mechanisms due

to severe neuropathological changes in the brain following ischemia. The data indicate that an episode of cerebral

ischemia activates the damage and death of neurons in the hippocampus in a tau protein-dependent manner, thus

determining a novel and important mechanism for the survival and/or death of neuronal cells following ischemia. In this

review, we update our understanding of proteomic and genomic changes in the tau protein in post-ischemic brain injury

and present the relationship between the modified tau protein and post-ischemic neuropathology and present a positive

correlation between the modified tau protein and a post-ischemic neuropathology that has characteristics of Alzheimer’s

disease-type neurodegeneration. 
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1. Post-Ischemic Tau Protein versus Blood-Brain Barrier

Hyperphosphorylation of the tau protein after ischemic brain injury  triggers the development of

neurofibrillary tangles , which are one of the major components of pathology in the brains of Alzheimer’s disease

patients. An ischemic brain injury causes a pathological permeability of the blood-rain barrier , which also

affects the hyperphosphorylation of the tau protein , and the modified tau protein may cause an

additional exacerbation of blood-brain barrier dysfunction (Figure 1), which induces harmful feedback . An

accumulation of amyloid in the brain, associated with the ischemic permeability of the blood-brain barrier , may, in a

roundabout manner, allow the onset of tau protein dysfunction, supporting the automatic link between amyloid

accumulation and tau protein modification at some stage of blood-brain barrier breakdown . Moreover, both oxidative

stress  and neuroinflammation  cause damage to the blood-brain barrier that may cause hyperphosphorylation of

the tau protein and the development of neurofibrillary tangles post-ischemia . Moreover, after ischemia, the

plasma-derived tau protein  crosses the ischemic blood-brain barrier in two directions and can enhance its own

pathology in the brain . In summary, ischemic blood-brain barrier failure may exacerbate in the brain tau protein

neuropathology in post-ischemic brain injury and also suggests that ischemic brain pathology may be part of the cause

responsible for the increase in the serum tau protein concentration .
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Figure 1. Interrelationships between hyperphosphorylated tau protein and post-ischemic brain neurodegeneration. ↓—

decrease. BBB—blood-brain barrier.

2. Post-Ischemic Tau Protein versus Excitotoxicity

Excitotoxicity has been identified as one of the most important pathological mechanisms associated with calcium changes

in post-ischemic brain injury . The existing data suggest that tau protein phosphorylation can be inhibited by

reducing calcium influx into neurons . It has been revealed that impaired glutamate homeostasis or the elevated activity

of calcium-dependent kinases may induce tau protein phosphorylation , and consequently, glutamate-induced

cytotoxicity may exacerbate the dysfunctional appearance of the tau protein (Figure 1) . Conversely, many studies

have shown that the tau protein also plays a significant role in enhancing excitotoxicity . In P301L tau

protein mice, KCl evoked an increase in glutamate release and decreased glutamate clearance in the hippocampus .

The exact mechanisms underlying tau protein-induced excitotoxicity require further elucidation. One study shows that the

tau protein increases excitotoxicity without increasing calcium influx through the kainic acid receptor . On the other

hand, other studies suggest that reducing tau protein phosphorylation at Y18 may reduce N-methyl-d-aspartic acid

receptor-mediated excitotoxicity in neurons . Overall, the phenomenon of excitotoxicity with the phosphorylation of

the tau protein leads to a vicious circle with respect to neuronal death in post-ischemic neurodegeneration (Figure 1).

3. Post-Ischemic Tau Protein versus Oxidative Stress

Oxidative stress is involved in neuropathological processes in the brain after ischemia in animals and humans. In

experimental models of ischemic neurodegeneration, it has been established that the hyperphosphorylation of the tau

protein may be a product of oxidative stress (Figure 1) . Thus, tau protein hyperphosphorylation might be

reduced using antioxidants . There is no definite opinion about the causal interaction between oxidative stress

and tau protein hyperphosphorylation. Some studies have shown that products of thiobarbituric acid, polyunsaturated

lipids, and 4-hydroxynonenal, resulting from cell lipid peroxidation, are significantly increased, which can cause tau protein

hyperphosphorylation . Recently, it has been suggested that the hyperphosphorylation of the tau protein is due to

the direct influence of reactive oxygen species, which is generated by 1,2-diacetylbenzene as a result of the

phosphorylation of activated glycogen synthase kinase 3β . Moreover, high levels of the hyperphosphorylated tau

protein have been documented to initiate the production of reactive oxygen species (Figure 1). Ultimately, oxidative stress

and the hyperphosphorylated tau protein may be two critical elements of the vicious cycle in the development of post-

ischemic brain neurodegeneration (Figure 1).

4. Post-Ischemic Tau Protein versus Mitochondria

The activity of neurons is closely related to energy deficiency. Thus, the task of the mitochondria is to continually supply

energy to neuronal and neuroglial cells. Consequently, impaired mitochondrial activity is an important neuropathological

process in the brain following ischemia with subsequent recirculation. Dysfunctional mitochondrial activity is closely

related to neuronal autophagy, necrosis, and apoptosis . Mitochondrial stability conditioned by fusion and fission is a

major issue in the development of mitochondrial dysfunction. Earlier data showed that protein 1 is related to dynamin, a

mitochondrial fission protein, and may work together with the phosphorylated tau protein to induce mitochondrial

dysfunction (Figure 1) . A reduction in dynamin-related protein 1 protects against the hyperphosphorylated tau

protein-induced dysfunction of mitochondria . In a murine model of tauopathy, tau protein deposits undermine the

distribution of mitochondria in neuronal cells . The unusual behavior of mitochondria can be improved by reducing the

level of soluble tau protein in their environment . Tau protein accumulation can both damage normal activity and

mitochondrial allocation by increasing mitofusins, which can cause ATP depletion, the development of oxidative stress,

and synaptic abnormalities . The pathway studies used axonal protein phosphatase 1, glycogen synthase kinase

3, and the retention of the C-Jun amino-terminal kinase-interacting protein 1 kinesin motor protein complex by

phosphorylated tau protein, which may be involved in neuropathological interactions . It should also be noted that

tau protein phosphorylation can also be enhanced by reactive oxygen species, mimicking mitochondrial oxidative stress in

neurons . In summary, the dysfunction of the tau protein may disrupt the function and dynamics of mitochondria, and

such altered mitochondria may be an indicator of tau protein phosphorylation and aggregation (Figure 1).

5. Post-Ischemic Tau Protein versus Autophagy

It is well known that autophagy plays a key role in the maintenance of normal levels of tau protein in neuronal cells 

. Autophagy has been shown to be an important neuropathophysiological process in brain neurodegeneration after an

[30][31][32]

[33]

[34][35]

[36]

[37][38][39][40][41][42]

[42]

[43]

[44][45]

[36][46][47]

[36][48][49][50]

[36][46][49]

[36][47]

[51]

[52][53]

[54]

[55]

[56][55]

[57][58][59]

[60][61]

[62]

[63][64]

[65]



ischemic stroke . Previous research has shown that a decrease in the tau protein is correlated with an increase in an

autophagy marker such as microtubule-associated protein 1A/1B-light chain 3B-II in a 3xTg mouse model of Alzheimer’s

disease after reversible hypoperfusion, indicating that autophagy may be a way to reduce the dysfunctional tau protein

levels in the brain . In contrast, another study reported a significant reduction in microtubule-associated protein 1A/1B-

light chain 3B protein growth and a reduction in infarct size in the P301L-Tau mouse model after ischemia . It might be

probable that autophagy insufficiency is triggered by a mutant tau protein with increased levels of its aggregates . In

addition, it has been documented that autophagy can induce tau protein expression in neuronal cells that overexpress the

human P301L-Tau mutant . In human tauopathies, p62 is an autophagy regulatory protein and its immunostaining co-

localizes with tau protein inclusions . In transgenic mice, the activity of autophagy may increase the clearance of the

tau protein  and thus, reduce the aggregation of the seeded tau protein . The phosphorylation of the tau protein is

believed to be due to seeded aggregation . The P62 and nuclear dot 52 protein are among the autophagy cargo

receptors playing an important role in protecting against the aggregation of the seeded tau protein in neurons . It is,

therefore, highly likely that autophagy, not proteasomes, reduces the aggregation of the seeded tau protein (Figure 1) .

6. Post-Ischemic Tau Protein versus Apoptosis

Apoptosis is naturally programmed cell death, acting as the most important and dangerous neuronal killer following brain

ischemia . Tau protein hyperphosphorylation and apoptosis are believed to be two self-contained, self-sufficient, and

overlapping neuropathological processes during neuronal death (Figure 1), although most researchers have found no

significant relationship between these phenomena . However, some studies have shown an ischemic accumulation

of cyclin-dependent kinase-5 , which regulates tau protein phosphorylation, and may initiate neuronal apoptosis through

degradation of the endoplasmic reticulum . It has also been documented that hyperphosphorylation of the tau protein

can be prevented by knocking down cyclin-dependent kinase-5, which may protect neuronal cells by alleviating

endoplasmic reticulum stress from apoptosis . Recent studies indicate that after cerebral ischemia,

hyperphosphorylated tau protein accumulates in cortical neurons and is associated with their apoptosis (Figure 1) 

. The above data clearly indicate that neuronal apoptosis after cerebral ischemia is associated with the

hyperphosphorylation of the tau protein (Figure 1).

7. Post-Ischemic Tau Protein versus Neuroinflammation

Neuroinflammation is considered a pathway that influences neuronal death in the acute and chronic phase following

cerebral ischemia with reperfusion . Some previous studies have suggested that the dysfunctional tau protein is directly

related to the neuroinflammatory cascade (Figure 1). It should also be noted that neuroinflammatory mediators can

significantly affect the function and structure of the tau protein post-ischemia . In addition, it has been suggested

that the dysfunctional tau protein may be a trigger of the neuroinflammatory cascade (Figure 1) . The exact role

of neuroinflammatory processes in the post-ischemic neuropathology of the tau protein or the dysfunctional tau protein in

neuroinflammation still needs to be clarified. Some researchers consider neuroinflammation as a worsening factor , but

another study has found that neuroinflammation can lower the level of oligomeric tau protein by improving phagocytosis

via microglia . The first direct evidence for the involvement of neuroinflammation in tau protein pathology was

presented in an in vitro study and showed that neuroinflammatory mediators, i.e., interleukin-1β, can promote tau protein

hyperphosphorylation (Figure 1) by the stimulation of p38 mitogen-activated protein kinases . This was also confirmed

in the 3xTg model of Alzheimer’s disease in vivo with the development of plaques and tangles . Recent studies have

also shown that various stressors such as lipopolysaccharide, infection, and tumor necrosis factor-α can initiate an

exacerbation of tau protein hyperphosphorylation . As a consequence, lowering tau protein levels or inhibiting

neuroinflammatory mediators may act as a treatment for tauopathies . A study by Kovac’s group revealed a new toxic

form of the misfolded tau protein, i.e., the formation of a truncated tau protein . The truncated tau protein may increase

the permeability of the blood-brain barrier (Figure 1) . In addition, studies have also provided evidence that the

truncated tau protein had a cytotoxic effect on astrocyte-microglia culture as manifested by increased levels of

extracellular adenylate kinase. The blood-brain barrier damage induced by the truncated tau protein was mediated by the

pro-inflammatory cytokine tumor necrosis factor α and the chemokine monocyte chemotactic protein 1 . It should also

be noted that the pro-inflammatory cytokine interferon-γ has been found to have an opposite effect on tau protein

phosphorylation and dephosphorylation, and, ultimately, induced neurogenesis . Microglial cells and macrophages play

a very important role in neuroinflammation. Extracellular tau protein oligomers can be moderately phagocytosed by both

microglia and macrophages under normal conditions . Microglial internalization has been shown to be effective for both

aggregated and soluble tau protein in vitro and in vivo . Overall, the inhibition of neuroinflammation in the parenchyma
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of the brain may paradoxically be involved in the development of the neuropathology of the tau protein. In assessing the

above information, more research is needed to elucidate these molecular phenomena.
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