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Aquaporins (AQPs) are water channel proteins that are essential to life, being expressed in all kingdoms. In

humans, there are 13 AQPs, at least one of which is found in every organ system. The structural biology of the

AQP family is well-established and many functions for AQPs have been reported in health and disease. AQP

expression is linked to numerous pathologies including tumor metastasis, fluid dysregulation, and traumatic injury.

The targeted modulation of AQPs therefore presents an opportunity to develop novel treatments for diverse

conditions. Various techniques such as video microscopy, light scattering and fluorescence quenching have been

used to test putative AQP inhibitors in both AQP-expressing mammalian cells and heterologous expression

systems. The inherent variability within these methods has caused discrepancy and many molecules that are

inhibitory in one experimental system (such as tetraethylammonium, acetazolamide, and anti-epileptic drugs) have

no activity in others. Some heavy metal ions (that would not be suitable for therapeutic use) and the compound,

TGN-020, have been shown to inhibit some AQPs. Clinical trials for neuromyelitis optica treatments using anti-

AQP4 IgG are in progress. However, these antibodies have no effect on water transport. More research to

standardize high-throughput assays is required to identify AQP modulators for which there is an urgent and unmet

clinical need.

Aquaporin  AQP inhibitors  AQP modulators  AQPs in disease  TGN-020

heavy metals  small molecule inhibitors

1. Aquaporin Inhibitors

Most of the molecules that are currently under investigation as aquaporin (AQP) inhibitors target AQPs 1, 2, 3 or 4.

There are many patents, clinical trials, and studies on AQP up-regulators, modulators, and inhibitors. For the

purposes of this review, only AQP inhibitors are considered (Table 1). 

Table 1. Currently-available AQP inhibitors, their structures, the AQPs they inhibit (species are highlighted as h—

human, m—mouse, and r—rat) and the conditions under which they were assayed.
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Inhibitor Conditions AQPs
Inhibited

Structure References

Tetraethyl-ammonium Xenopus oocytes
100 µM

hAQP1

Phloretin Xenopus oocytes
0.1 mM
Proteoliposomes
0.5 mM

rAQP9
hAQP3

Mercury chloride Xenopus oocytes
1 mM

hAQP1

AuPhen Erythrocytes
50 µM
Adipocytes
15 µM

hAQP3
hAQP7

Silver nitrate Erythrocytes
10 µM

hAQP3

Copper sulfate Swan 71 cells
100 µM

hAQP3

Nickel chloride Human bronchial
epithelium cells
1 mM

hAQP3

Furosemide Xenopus oocytes
10 µM

hAQP1

Bumetanide Xenopus oocytes
100 µM

rAQP4
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Several molecules have been suggested as inhibitors of various AQPs over the past few years. Of these, most are

small molecules (Table 1). The similarity found between AQPs and ion channels has caused interest in ion channel

modulators as possible AQP inhibitors . Arylsulfonamides such as acetazolamide are molecules that have

attracted attention as potential AQP inhibitors . Anti-epileptic drugs (AEDs) have also been suggested to have

an AQP modulating function . However, they have yet to be proven as definitive AQP inhibitors. A novel molecule

named TGN-020 has shown great promise very recently as an inhibitor in mouse models . Micro RNA (miRNA)

and small interfering RNA (siRNA) have also been used to modulate AQPs . Mercury chloride binds to a pore-

lining cysteine residue found on several (but not all) AQPs and blocks the channel . Mercury and its compounds

is known to be toxic due to their non-specificity which causes many off-target effects . Other heavy metal

compounds (such as silver and gold compounds) have been investigated as inhibitors, but the challenge is finding

a molecule with a side-effect profile that is tolerable. Currently-known inhibitors are discussed by type in the

sections below.

1.1. Small Molecule Inhibitors

Tetraethylammonium (TEA) is a small molecule inhibitor that was first tested due to perceived similarities between

AQPs and ion channels. Using human AQP1 expressed in Xenopus oocytes, a maximum single dose of 10 mM

TEA caused a reduction in water permeability of 33% . Another study using 4 µM and 100 µM TEA showed an

inhibition of 44% for Xenopus oocytes expressing AQP1, with no differences at the two concentrations; TEA also

inhibited AQP2 and AQP4, with maximal inhibition of 40% and 57%, respectively, at 100 µM TEA . Further

testing of TEA in Xenopus oocytes or in native AQP1-expressing erythrocytes has failed to show inhibition

(Søgaard and Zeuthen 2008, Verkman, Anderson et al. 2014). TEA is thought to act by binding to a tyrosine

residue located on the extracellular end of transmembrane helix 5 .

Acetazolamide is a carbonic anhydrase inhibitor used in glaucoma to reduce aqueous humor production and hence

intraocular pressure . It has been shown to be a reversible inhibitor of AQP1 and AQP4 (Table 1). It has

inhibitory effects on Xenopus oocytes expressing human AQP4 in a dose-dependent manner with maximal

inhibition of 85% at the highest dose of 20 µM . A reduction in the water permeability of rat AQP4 (assayed in

proteoliposomes) to 46% was observed at a maximum dose of 1.25 mM acetazolamide . In HEK293 cells

expressing rat AQP1, there was a 39% reduction in water permeability with 100 µM acetazolamide compared to

untreated rat AQP1 (using GFP fluorescence to measure swelling) . However, acetazolamide appears to be

unable to inhibit endogenous AQPs in human cells .

Anti-epileptic drugs (AEDs) have also been suggested as possible AQP inhibitors . Their anti-epileptic action has

been hypothesized take place through modulation of AQPs. Many AEDs such as topiramate, zonisamide, and

lamotrigine are known to have a similar inhibitory effect to acetazolamide on carbonic anhydrase enzyme as well

as an in silico predicted binding site on AQP4 that is similar to that hypothesized for acetazolamide . AEDs had

an inhibitory effect on AQP4 in Xenopus oocytes , however, this could not be reproduced in rat thyroid epithelial

cells . AEDs are thought to possibly have an inhibitory effect on AQP1, AQP4, and AQP5 . However due to

Inhibitor Conditions AQPs
Inhibited

Structure References

N-(5-Sulfamoyl-1,3,4-
thiadiazol-2-yl) acetamide

Xenopus oocytes
20 µM

hAQP4-
M23

IMD-0354 Mice
0.76 mg/kg

mAQP4-
M23

Acetazolamide HEK293 cells
10 µM

rAQP1
rAQP4

TGN-020 C57/BL6 male mice
200 mg/kg (23–28 g)

mAQP4

Topiramate Xenopus oocytes
20 µM

rAQP4-
M23

DFP00173 Human erythrocytes
25 µM

hAQP3

Z433927330 Human erythrocytes
25 µM

mAQP7
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their unconfirmed mechanisms of action and relatively non-specific action, there is no conclusive evidence showing

that AEDs are effective and safe AQP inhibitors .

TGN-020 was shown in mouse models to significantly reduce AQP4-mediated edema following ischemia, but the

molecule was administered before injury . There was an approximately 10% reduction in brain volume .

Therapeutic administration must necessarily occur after a stroke, although a prophylactic treatment could be

considered if the side effect profile of TGN-020 was acceptable. TGN-020 has since been tested on the same

middle cerebral artery occlusion (MCAO) model and administered post-injury in mice. In a study using mouse

models at a dose of 100 mg/kg, TGN-020 was administered 15 minutes post-ischemic injury and treated animals

had better motor scores and less AQP4 expression around blood vessels when compared to untreated controls .

The half-maximal inhibitory concentration (IC ) of TGN-020 was 3µM in Xenopus oocytes expressing human

AQP4, but there is no evidence to show that TGN-020 is AQP4-specific .

Phloretin is a small molecule that acts as a non-specific aquaglyceroporin inhibitor. It has also been shown to

inhibit the urea transporter, UT-A1, found in the kidney . It has been speculated that the same mechanism

underpinning urea inhibition is responsible for inhibition of the aquaglyceroporins, AQP3 and AQP9 . Then 100

µM of phloretin was used to inhibit AQP9 expressed in Xenopus oocytes, resulting in an 86% inhibition . AQP3

glycerol permeability in proteoliposomes was inhibited by 500 µM phloretin, producing 83% inhibition. Phloretin had

no effect on control proteoliposomes which had a P  of ~2.8 × 10  cm/s .

A recent study identified new inhibitors of the aquaglyceroporins, AQP3 and AQP7. The compound DFP00173 was

able to inhibit the glycerol permeability of human erythrocytes with an IC  of ~0.2µM. Compound Z433927330

reduced glycerol permeability with an IC  of ~0.6 µM. In a Chinese hamster ovary cell-line, compound DFP00173

was able to inhibit mouse AQP3 with an IC  of ~0.1µM and was selective for AQP3 over AQP7 and AQP9.

Compound Z433927330 was able to inhibit mouse AQP7 in the same cell-line with an IC  of ~0.2 µM and with

selectivity for AQP7 over AQP3 and AQP9; IC s for this compound for mouse AQP3 and AQP9 were ~0.7 µM and

~1.1 µM, respectively .

1.2. Heavy Metal Ion Inhibitors

Heavy metal compounds have been used in cytotoxic treatments for many years, with the use of the platinum

compound cisplatin being notable in cancer therapy. Many AQPs have been correlated with cancers, their

presence influencing disease severity, increased local invasion, and the occurrence of metastasis . AQP1

overexpression has been identified in brain, breast, lung, renal, cervical, ovarian, and colorectal cancers . AQP3

overexpression has been found in skin, stomach, renal, liver, colorectal, lung, and cervical cancers . AQP3 is

highly expressed in skin carcinoma cells. The uptake of glycerol through AQP3 is thought to aid the growth of these

cancer cells . AQP4 overexpression is found in brain, lung, and thyroid cancers . AQP5 overexpression has

been found in breast, cervical, colorectal, liver, lung, pancreatic, ovarian, and esophageal cancers . AQP7 and

AQP8 overexpression are found in thyroid and cervical cancer, respectively . AQP9 overexpression has been

found in brain, liver, and ovarian cancers .
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Nickel chloride has been shown to inhibit AQP3 overexpressed in human bronchial epithelium cells. Water

permeability was reduced to approximately 60% in cells treated with 1 mM NiCl  compared to non-transfected

control cells . Mutational studies showed that the extracellular loop residues, Trp-128, Ser-152, and His-241,

were all required for the observed inhibitory effect, but that further studies are required to confirm similar effects in

other AQP3-expressing tissues such as the kidney . Copper ions also inhibit AQP3 function and attempts to

reduce the toxicity of copper compounds have been addressed by using nanoparticles for delivery . Copper

sulfate has been identified as an AQP3 inhibitor at 100 µM . It is believed that copper ions act by binding the

same three residues on the extracellular loops as nickel ions . This inhibition mechanism is different from that of

mercury ions, which bind to Cys-40 in AQP3 . Copper compounds have been shown to specifically inhibit

AQP3 and not AQP4, AQP5, or AQP1 , while other AQPs remain to be tested. Gold-based compounds have

also been used as AQP3 inhibitors and have been shown to be effective. AQP3 is found in erythrocytes, alongside

AQP1, however its role is mostly for glycerol rather than both water and glycerol permeability . Erythrocytes

showed a 90% decrease in glycerol permeability following treatment with 50 µM AuPhen. The binding of this gold

compound is thought to be via Cys-40 and inhibition can be almost completely reversed by the addition of the

reducing agent, 2-mercaptoethanol . AuPhen and other Au(III) compounds such as Auterpy were also compared

with copper and platinum compounds as AQP3 inhibitors . Due to their effective inhibition of glycerol transport

in AQP3, they were tested on AQP7, another aquaglyceroporin. Initial results have demonstrated that 15 µM

AuPhen inhibited water and glycerol transport through AQP7 : there was a reduction in water permeability (63%)

as well as glycerol permeability (79%). Adipocytes overexpressing hAQP7 were used and permeability was

measured using loading with 5 µM of calcein-AM and hyperosmotic shock. In silico docking studies suggest that

Auphen binds AQP7 through an interaction with Met-47 . Silver has also been used as a possible AQP inhibitor

and is found to produce a rapid and irreversible inhibition of AQP1 in erythrocytes . It has been shown to be a

much more potent inhibitor of AQP1 in erythrocytes than mercury, . Silver nitrate and silver sulfadiazine were

tested as inhibitors to prevent shrinking of human erythrocytes in hyperosmotic solutions. A dose-response curve

was used to calculate an IC  of 3.9 µm and 1.24 µm and a 60% and 75% inhibition for silver nitrate and silver

sulfadiazine, respectively. Gold and silver are thought to bind to sulfhydryl groups on cysteine residues of AQPs,

but the complete mechanisms are not yet understood .
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