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Ovarian cancer (OC) represents the fifth leading cause of cancer-related deaths among women. In the advanced disease

setting, OC recurrence after chemotherapy is over 70% in the first 2 years, with few therapeutic options. Immunotherapy

with the immune checkpoint inhibitors (ICIs) showed high efficacy and changed the therapeutic scenario of many tumors

in the last 10 years.
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1. Introduction

Ovarian cancer (OC) accounts for about 2% of tumors, representing the eighth most common cancer among the female

population. The incidence is around 11 cases/100,000 inhabitants/year, and it is higher among white women . The

frequency of OC rises with age, being uncommon before 30, and more frequently presenting at 50–70. Globally, ovarian

cancer represents the fifth leading cause of female cancer-related deaths, with a 5 y survival rate falling from 90% at

stage I to 25% at stage IV . The majority of OCs have an epithelial origin, among whom serous carcinoma has the most

aggressive features and is usually diagnosed at advanced stages . Platinum-based chemotherapy regimens represent

the mainstay of treatment . The response to these agents and the treatment-free interval (TFI) after platinum

define the subsequent treatment, moving from the platinum-refractory (PR) (relapse < 6 months from the platinum end) to

the platinum-sensitive (PS) patients (TFI > 12 mos). Despite initial benefits, disease recurrence occurs in over 2/3 of

patients within the first two years. Therefore, new drugs were explored, and other agents such as the PARP-inhibitor

(PARPi) agents and the anti-vascular endothelial growth factor (VEGF) bevacizumab were approved in the advanced

setting .

Immunotherapy has represented a breakthrough therapy for many solid tumors . Thus far, the best-studied

mechanisms for inducing an immune response against tumors rely on inhibiting the immune checkpoint. The immune

checkpoint inhibitors (ICIs) consist of monoclonal antibodies targeting Programmed Cell Death Protein 1 (PD-

1)/Programmed Death-Ligand 1 (PD-L1) or Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), expressed by tumor or immune

cells. After binding with these ligands, ICIs remove the inhibition signals for the immune system, unlocking the anti-tumor

response . However, in OC, ICIs reported modest results, and some phase III trials were prematurely terminated for

futility. Combinations with other compounds, such as PARPis or anti-angiogenic drugs, represent promising opportunities

to enhance the clinical effectiveness of immunotherapy 

.

2.  ICIs in Ovarian Cancer

Given the impact on morbidity and mortality among the female population, the search for new therapeutic options

represents an unmet need for OC. Immunotherapy has revolutionized the treatment landscape of many solid tumors in the

last ten years, and it now represents the first therapeutic approach with impressive survival benefits in diseases such as

lung cancer, melanoma, renal cell carcinoma . However, limited benefits have emerged in OC, even leading to

premature termination due to the futility of some studies. Different components of the OC tumor microenvironment (TME)

contribute to this failure, such as myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), T-

cells, cytokines, and soluble factors . MDSCs exert immunosuppressive functions, such as the inhibition of T-

effector and natural killer (NK)-cells, and are induced under pro-inflammatory cytokines, IFNγ, tumor necrosis factor-alpha

(TNFα), interleukin (IL)-6 . In OC, IL-6 plays a negative prognostic role and is associated with high MDSCs, and tumor

progression . The inflammatory cytokines cooperate to induce cyclooxygenase-2 (COX-2) and lead to prostaglandin

E2 (PGE2) synthesis, which limits T-cell recruiting at tumor sites, together with VEGF . TAMs are recruited at ovarian

tumor sites, and IL-6, IL-10, transforming growth factor (TGF)-β promote their differentiation in M2 macrophages,
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associated with tumor invasiveness, spread, and angiogenesis . M2 macrophages increase with the OC stage

when contemporary M1 macrophages decrease, playing a negative prognostic role . Moreover, they promote

immunosuppression by producing cytokines (IL-1R, IL-10, C-C Motif Chemokine Ligand [CCL]17, CCL20, CCL22) that

inhibit T-effectors proliferation and enhance Tregs function . Treg cells are associated with advanced stages of

OC and have a negative prognostic and immunosuppressive role . They produce IL-10 and TGFβ, contributing to the

inhibition of effector T-cells . High levels of immunosuppressive elements within OC TME can also weaken dendritic

cells and antigen-presenting cells (APCs) activity . More accurate knowledge of the TME of the primary tumors and the

metastatic sites will facilitate the design of more effective treatment combinations (Figure 1).

Figure 1. Immunosuppressive elements of ovarian cancer (OC) microenvironment. Cytokines and other soluble factors,

such as interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα), interleukin (IL)-6, IL-10, and transforming growth

factor-beta (TGFβ) induce the proliferation of myeloid-derived suppressor cells (MDSCs) and the polarization of tumor-

associated macrophages (TAMs) towards the M2 subtype. MDSCs exert immunosuppressive functions, such as the

inhibition of T-effector and natural killer (NK)-cells. The inflammatory cytokines cooperate to induce cyclooxygenase-2

(COX-2) and lead to prostaglandin E2 (PGE2) synthesis, which limits T-cell recruiting at tumor sites. M2 macrophages

promote immunosuppression by producing cytokines (e.g., IL-1R, IL-10, C-C Motif Chemokine Ligand [CCL]17, CCL20,

CCL22) that inhibit T-effectors proliferation and enhance Tregs function.

OC encompasses a heterogeneous group of malignancies that in over 95% of cases have an epithelial origin and are

more frequently represented by high grade serous ovarian carcinoma (HGSOC) (70% of cases), followed by endometrioid

ovarian cancer (EOC) (10%), clear cell OC (ccOC) (10%), low-grade serous OC (LGSOC, less than 5%), and mucinous

OC (MOC, around 3%) . Among them, the ccOC seems to be the most immunogenic: it more frequently carries the DNA

microsatellite instability (MSI), has higher CD8+ tumor-infiltrating lymphocites (TILs), CD8+/CD4+ ratio, and higher PD-L1

levels . Effectively, it is five times more responsive to ICIs than other OC subtypes . Even among HGSOC, at

least four different genomic classes were identified in The Cancer Genomic Atlas registry, differing for immunoreactivity. A

unique subtype expresses genes related to immune sensitivity such as Toll-like receptor (TLR), TNF and is characterized

by higher TILs infiltration . Moreover, proteomics studies showed that the four subclasses of HSGOC are

characterized by different expressions of proteins involved in DNA replication, ECM and cellular interaction, and cytokine

signaling that contributes to immune responsiveness . In our opinion, the different ICIs response observed among OC

patients is rooted in the inter-tumor heterogeneity. Therefore, a deeper insight into the genomics characteristics of OC and

their relationship with the immunological profile could allow us to better clarify the predictive factors for ICIs response.

Ideally, specific immunogenomic scores could be developed for more accurate patients selection.

OC has been indicated as potentially more immune responsive when carrying BRCA mutations or homologous

recombination deficiency (HRD). In fact, the impaired DNA repair leads to neo-antigens production, resulting in a higher

tumor mutational burden (TMB) (even if <10 mutations per megabase are usually detected) and recruiting TILs at tumor

sites. However, HRD or BRCA mutations were not linked to a higher sensitivity to ICIs in the IMagyn050 nor in the Javelin

Ovarian 100 trials . BRCA-mutant/HRD OC is associated with higher CD3+ and CD8+ TILs, PD1/PD-L1 levels, and

genes related to cytotoxicity, such as T-Cell Receptor (TCR), γ-IFN, and TNF-Receptor pathway . As proof of

this, in the NCT02484404 trial, durvalumab plus olaparib determined a longer PFS in case of increased γ-IFN production

. Another mechanism of immune responsiveness is represented by the mismatch repair (MMR) deficiency, harboring

the DNA MSI. MSI tumors produce neo-antigens, with a 10–100-fold higher TMB than MS stable (MSS)-tumors, resulting

in high immunogenicity. Some genes triggering MSI were also identified in a percentage ranging from 17% to 59% of OC

(more commonly in non-serous subtypes): the oncosuppressor TP53; Dihydropyrimidinase-related protein (DPYSL)-2,

involved in microtubules function; Alpha Kinase (ALPK)-2, with a role in apoptosis and DNA repair . In Lynch syndrome,
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a germline mutation of the MMR genes MutL homolog (MLH)-1, MutS homolog (MSH)-2 and -6, PMS1 homolog (PMS)-2

leads to an increased risk to develop some cancer subtypes, including OC . Therefore, these tumors may be good

candidates for ICIs treatment. Other genes could be involved in ICI response, justifying the different results observed

among OC patients. The SWItch/Sucrose Non-Fermentable (SWI/SNF) complex consists of around 15 subunits, acting as

a chromatin remodeler. In other tumor subtypes, the loss of function of the SWI/SNF complex predicts ICI response,

increasing MMR deficiency, TMB, and neo-antigens production . SWI/SNF complex mutations were frequently detected

in OC . We can assume that genetic diversity contributes to different ICI responses among OC patients. A more

extensive genetic characterization could allow more accurate identification of responders and non-responders.

The possible relationship between platinum- and immunotherapy-sensitivity/resistance is also a field that merits further

investigation . A series of genetic and epigenetic elements were identified to drive platinum response: alterations of

p53, specific microRNAs, elements driving the epithelial-to-mesenchymal transition (EMT), HRD, and BRCA mutations

. Since BRCA mutation and HRD were proposed to correlate with platinum sensitivity in contemporary deficient

nucleotide excision repair, the co-administration of PARPis and ICIs in PS-ROC could result in higher ORR and survival

rates . PARPis enhance ICIs activity because they induce the release of neoantigens, increasing the TMB,

promote PD-L1 expression, and directly activate the IFN genes; however, this was determined in OC .

Many ongoing trials are addressing this combination strategy in the advanced setting.

As ICIs monotherapies showed only minimal results in terms of response rate and survival in OC, the combination with

agents with different mechanisms of action appears a promising strategy to increase efficacy. Although chemotherapy

represents a cornerstone in the treatment of advanced OC, it was historically perceived to play an immunosuppressive

role. On the contrary, more recently, it has emerged that platinum derivatives promote APCs and their function, activating

the immune response . Doxorubicin plays an immunomodulatory effect, reducing the immunosuppressive state

and improving tumor sensitivity to NK and CD8+ T-cells . Low-dose cyclophosphamide also holds immunomodulatory

properties, such as Tregs reduction and CD8+ cells induction . However, the studies conducted so far did not lead to

survival improvements. Besides the immunological potential, timing and schedule should be more deeply investigated and

optimized for improving efficacy. The combination of ICIs and anti-VEGF agents seems attractive because the anti-

angiogenic drugs directly influence OC TME . Other combinations with multikinase inhibitors targeting

VEGF/VEGFRpathway, such as cabozantinib or lenvatinib, are now under evaluation. The association with other agents

with immunotherapeutics role, such as the anti-Lymphocyte-activation gene 3 (LAG-3) Relatlimab, as well as monoclonal

antibodies such as the anti-Cluster of differentiation (CD)27 Varlilumab, the anti-CD47 Magrolimab, is under investigation.

Actually, overcoming the immunosuppressive pathways in the TME could represent a complementary way to potentiate

ICIs effect on the immune system. Therapeutic vaccines were administered in OC, inducing cellular and humoral

responses but rarely survival improvement as monotherapies . Hence, several tumor-associated antigens were found

in OC, such as p53, folate receptor (FR), New York Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1), and Ca125 

. Therefore, combinations of ICIs and vaccines need to be explored. New approaches such as autologous TILs,

cancer cell therapy, and adoptive cell therapy (ACT) also represent future possibilities for improving ICIs efficacy.

Currently, a uniformly accepted predictive role of PD-L1 for ICIs response was not yet identified in solid tumors, including

OC. PD-L1 expression varies between primary tumors and metastases, implying heterogeneity . However, even if PD-

L1 positivity was retrieved in around 1/3 OCs, the clinical impact was not elucidated, with conflicting results regarding the

association with higher tumor stage/grade or shorter survival . Indeed, some of the published trials reported

better results for PD-L1 positive than PD-L1 negative patients . In other studies, PD-L1 positivity was not

predictive of ICIs response . Recent research has focused on the post-transcriptional modifications of PD1, and

even more PD-L1, which N-glycosylation of specific sites functionally modulates. PD-L1 and PD1 N-glycosylation ensure

stability, prevents clearance, and influences mutual interactions . The N-glycosylation of the PD1/PD-L1 receptors

and its aberrations should be better investigated as possible immune resistance mechanisms in OC since specific

glycoproteomic signatures were found in HGSOC: the immunoreactive subtype was richer in mannose than the

mesenchymal, which was mainly fucosylated . Moreover, it was evidenced that the antibodies used in the

immunohistochemical analysis for PD-L1 accessed the highly glycosylated PD-L1 with difficulty, resulting in a certain

percentage of PD-L1 false-negative results partially explaining ICIs efficacy also in PD-L1 negative patients . More

profound knowledge of the post-transcriptional status of PD1/PD-L1 and the search for biomarkers with a predictive role

for ICIs’ efficacy is warranted to ensure the best patient selection.
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