
DoS Attack in Cloud Based Kubernetes Using eBPF | Encyclopedia.pub

https://encyclopedia.pub/entry/52013 1/6

DoS Attack in Cloud Based Kubernetes Using
eBPF
Subjects: Computer Science, Cybernetics

Contributor: Amin Sadiq , Hassan Jamil Syed , Asad Ahmed Ansari , Ashraf Osman Ibrahim , Manar Alohaly , Muna

Elsadig

Kubernetes is an orchestration tool that runs and manages container-based workloads. It works as a collection of

different virtual or physical servers that support multiple storage capacities, provide network functionalities, and

keep all containerized applications active in a desired state. It also provides an increasing fleet of different facilities,

known as microservices. However, Kubernetes’ scalability has led to a complex network structure with an

increased attack vector. Attackers can launch a Denial of service (DoS) attack against servers/machines in

Kubernetes by producing fake traffic load, for instance. DoS or Distributed Denial of service (DDoS) attacks are

malicious attempts to disrupt a targeted service by flooding the target’s service with network packets. Constant

observation of the network traffic is extremely important for the early detection of such attacks. Extended Berkeley

Packet Filter (eBPF) and eXpress Datapath (XDP) are advanced technologies in the Linux kernel that perform

high-speed packet processing. In the case of Kubernetes, eBPF and XDP can be used to protect against DDoS

attacks by enabling fast and efficient network security policies.

Denial of service (DoS) Distributed Denial of service (DDoS) attack kubernetes

Extended Berkeley Packet Filter (eBPF) eXpress Datapath (XDP)

1. Introduction

Before the 1990s, the monitoring and analysis of the packets used to be performed using the classic packet

filtering mechanism in which all the packets were copied from the kernel space to the userspace, leading to an

increased packet processing latency. In 1992–1993, Steven McCanne and Van Jacobson introduced a mechanism

named Berkeley Packet Filter (BPF), in which not all the packets are copied from the kernel space to the

userspace . The architecture of the BPF virtual machine is designed for a 32 bits machine with a fixed-length

instruction set. BPF was first introduced with the Unix operating system. Then, this filtering mechanism was

improved to the Extended Berkeley Packet Filter (eBPF), which was adopted by Linux and Windows . eBPF is a

Linux technology that allows for the safe and efficient execution of code within the Linux kernel. It provides a

powerful mechanism for implementing complex network functions, such as firewalls, load balancers, and network

monitoring, without the need for custom kernel modules. eBPF is a program executed on the Linux kernel when

some event is triggered. eBPF provides a wide range of functionalities such as packet monitoring, tracing new

processes, and the detection of any event generated by the computer, etc. eBPF has an improved instruction set

architecture (ISA) architecture with more registers. Unlike BPF, eBPF filters all the packets at the kernel space to

[1]

[2]

DoS Attack in Cloud Based Kubernetes Using eBPF | Encyclopedia.pub

https://encyclopedia.pub/entry/52013 2/6

better decrease the latency. Moreover, the high-speed processing power of eBPF facilitates the analysis of every

packet in the network. XDP is a networking technology that provides a fast and efficient way to process network

packets at the kernel level. It allows for the processing of packets before they reach the higher-level networking

stack, enabling faster and more efficient handling of network traffic. XDP is well-suited for use in applications that

require high-speed packet processing, such as network security, load balancing, and network monitoring.

BPF Programs are written in restricted C programming language due to the Linux kernel. However, a tool named

BPF Compiler Collection, i.e., BCC , makes the BPF program much easier to write using Python and some

restricted C languages. This BPF code is first compiled into BPF bytecode in userspace using a low-level virtual

machine (LLVM) or Clang. After passing through a verifier (for authentication and verification), a just-in-time

compiler helps to convert this code into a native machine code and execute the program using a separate virtual

machine on Linux Kernel . Infinite loops, global variables, etc., are not supported, so this limitation while

implementing the programs must be considered.

Today, Kubernetes has become a leading open-source orchestration tool that provides dynamic scalability,

manages different resources needed by the physical or virtual servers, and fulfills the different adaptations and

dependencies of the applications. Kubernetes communicates between the different collections of containers on

which different applications are running. It is a complex system that allows communication between different

components within a cluster and between pods. The structure of a Kubernetes cluster network can be broken down

into several key components: cluster network, pods network, etc. Like any complex software system, Kubernetes

might have security flaws that attackers could use against users if it is not secured properly. If the cluster network is

not properly secured, an attacker could potentially intercept sensitive data or inject malicious traffic into the

network. Kubernetes uses containers to deploy applications, and these containers are built from images. If an

attacker can inject malicious code into a container image, they could potentially compromise the application

running in that container, Kubelet, which facilitates communication between various nodes, and containers that are

executing on the nodes can all be big contributors to making the cluster vulnerable to attack while considering the

cluster network. In addition, it provides the interface platform for the application that needs to provide high

availability and scalability through its microservices . Users of Kubernetes test the deployment features of an

application by diverting traffic between different containers. On the other hand, malicious users may compromise

Kubernetes clusters to control other users’ containers. Over the past years, methods and gadgets for launching an

attack have drastically improved. DoS (Denial of Service) or DDoS (Distributed Denial of Service) are potentially

the most renowned attacks. The goal behind DoS or DDoS attacks is to bring the server out of reach for others and

it will create a potential gap in the performance overhead of the system. eBPF is a revolutionary technology in a

Linux kernel that handles everyday tasks and affects the processes running on the server. eBPF has a significant

impact on system performance because of different complexities and the frequency of the events. It can be used to

perform various tasks ranging from package isolation to opening a particular document in the file system. Unlike

other ways to change the behavior of a part, eBPF does not require part recompilation or part module assembly

and is protected from execution by security checks by stacking code verifiers. Each second is important in

detecting malicious packets so that particular prevention methods can be applied. Express Data Path (XDP)

gives the quick execution of group dealing with and programmable association way in the cycle of Linux. XDP

[3]

[4]

[5]

[6]

DoS Attack in Cloud Based Kubernetes Using eBPF | Encyclopedia.pub

https://encyclopedia.pub/entry/52013 3/6

generally processes the packages’ level of the stack, which prompts the quick presentation without compromising

the programmability.

In the past few years, detection and prevention approaches have been topics of interest in the fields of networks

and cybersecurity. One of the major security risks to many networks in the last ten years is a DDoS attack. It can

not only stop authorized users from using and accessing network resources, but it can also destroy the network .

Cloud services and microservices are at high risk of DDOS attacks . In 2019, it is reported that a Kubernetes

cluster that was being utilized to host a cryptocurrency mining operation came under attack from a distributed

denial-of-service (DDoS) attack. The attack, which wrecked the Kubernetes cluster and halted the mining process,

was launched by the attackers using a huge number of compromised machines. A DdoS attack against a

Kubernetes cluster hosting a machine learning platform was reported by researchers in 2020. The attack was

carried out by the attackers using a large number of compromised devices, which led to the collapse of the

Kubernetes cluster. In , it was highlighted that these types of cyber attacks are not only limited to a specific

area but operate in a different area as well, which helps the potential attackers use the open and less privileged

loophole and then make the entire system compromised.

2. eBPF, Microservices, DDOS, and the Application of the
eBPF to Various Containerized Services on Kubernetes

Several researchers , and have proposed different strategies and solutions for the use of eBPF

on different aspects of emerging technologies. A brief description of the related studies in Table 1 is provided.

Table 1. Summary of related studies.

[7]

[8]

[9][10]

[11][12][13] [14][15][16]

S.No. Existing
Work Summary Limitations

1

For the first time, eBPF was used for the detection tasks
of the kernel like observing the page faults, over-viewing

the memory distribution, etc. The author(s) has
encountered the advantage and success factor of eBPF

when developing complex networks.

While focusing on the numerous
complicated services, the

proposed design should also
assess the system overhead.

2

The author(s) have proposed a solution for the Intrusion
detection of the system by using eBPF at the kernel

which filtered the huge amount of network packets using
the matching rule set of the snorting method.

It seems that there should be
state-of-the-art comparison with
other features to evaluate the

performance of the system

3

The aim is to implement an efficient and effective
processing pipeline that will help to prevent Distributed

Denial of Service (DDoS) attacks. The authors have
increased the mitigation power at the server end which

will drop the DDoS by using the specific ruleset. eBPF is
a flexible tool that will help to sample the network traffic
of the operating system using hardware-based filtering.

When the server has a lot of
resources preserved on it, the

performance of the work will be
reduced by the suggested

approach.

[12]

[11]

[15]

DoS Attack in Cloud Based Kubernetes Using eBPF | Encyclopedia.pub

https://encyclopedia.pub/entry/52013 4/6

The above-mentioned studies can be classified into two categories: (1) studies that focused on the use of eBPF in

the complex network structure and also the filtering of the kernel packets at the userspace, which will further help

to formulate different intrusion patterns ; (2) studies that discussed the mitigation of the DDoS attack on

the server side and also bypassing the kernel and filtering out all the detailed information on the user side, which

will overcome the overhead on the Linux network stack . In , the accuracy and efficiency of the

observability and monitoring based on the microservices were discussed, along with using a framework for

Network Function Virtualization to achieve flexibility. In , the authors have discussed the offloading mechanism

of the packet using eBPF.

In , the kernel used eBPF for detection duties like looking for page faults and monitoring the distribution of

memory, among other things. The benefit and success element of eBPF was experienced while creating complex

networks. Use of eBPF at the kernel, which filtered a sizable number of network packets using a matching rule set

of the Snort approach, as the solution for the system’s intrusion detection.

In , the objective is to develop a processing pipeline that is effective and efficient, which will aid in preventing

DDoS attacks. By employing a specific ruleset, the authors have boosted the server-end mitigation strength,

decreasing the DDoS. eBPF-based solutions essentially bypass the kernel and filter all network packets in

userspace, avoiding the Linux network stack’s overhead in the process. The performance problem that occurs

when packets are filtered and examined in the kernel space has been resolved by the suggested fix.

S.No. Existing
Work Summary Limitations

4

The author has proposed a solution based on eBPF
which bypasses the kernel and filters all the network

packets at the userspace which usually skips the
overhead of the Linux network stack. The proposed

solution has overcome the performance issue that arises
when packets are filtered and analyzed at kernel space.

The recommended architectural
designs perform with a small

number of alterations. The lack
of drivers and other resources

will require significant
adjustments to the solution.

5

The author(s) proposed a non-intrusive protocol-
independent intelligent analytics system, more efficient

and accurate and also provides the point-to-point
observability solution with works on eBPF. It also enables

the transparency of the packets for an application like
Kubernetes in which having nodes, clusters, pods,

containers, etc.

The proposed machine learning-
based observability approach will
become more complicated as the
number of nodes and pods rises.

6

A framework was introduced by the author on Network
Functions Virtualization to enhance its capability for in-
kernel packet processing applications which provides
flexibility dynamically in the run-time environment. The
framework used for the development of the complex

networks provides efficiency in the kernel data plane and
flexible user-space control plane for the persistence

environment.

There is a potential bottleneck
mechanism that could cause a

delay in the mechanism’s latency
when a large number of packets

are transferred from kernel
space to userspace.

7

The author(s) have highlighted the benefits of XDP and
eBPF using the offloading mechanism based on eBPF to

the kernel space from the userspace. The offloading-
based mechanism is an optimized solution for the packet

processing.

When a significant number of
packets arrive at the same time,
the proposed solution will begin
to slow down and SmartNIC will

become stuck.

[16]

[14]

[17]

[13]

[11][12][18]

[15][16] [14][17]

[13]

[11][12]

[15][16]

DoS Attack in Cloud Based Kubernetes Using eBPF | Encyclopedia.pub

https://encyclopedia.pub/entry/52013 5/6

In , a non-intrusive, protocol-independent intelligent analytics system that operates on eBPF is more effective,

accurate, and offers a point-to-point observability solution. Additionally, it makes the packet transparency for the

microservices possible. In addition, it enhances its capability for in-kernel packet processing applications, which

provides flexibility dynamically in the run-time environment.

In , the advantages of XDP and eBPF utilizing the eBPF-based offloading method from the userspace to the

kernel space have been noted. It is ideal to use the offloading-based approach for packet processing.

References

1. McCanne, S.; Jacobson, V. The BSD Packet Filter: A New Architecture for User-Level Packet
Capture. In Proceedings of the USENIX Winter, San Diego, CA, USA, 25–29 January 1993;
Volume 46.

2. Vieira, M.A.; Castanho, M.S.; Pacífico, R.D.; Santos, E.R.; Júnior, E.P.C.; Vieira, L.F. Fast packet
processing with eBPF and XDP: Concepts, code, challenges, and applications. ACM Comput.
Surv. CSUR 2020, 53, 1–36.

3. Scholz, D.; Raumer, D.; Emmerich, P.; Kurtz, A.; Lesiak, K.; Carle, G. Performance implications of
packet filtering with Linux eBPF. In Proceedings of the 2018 30th International Teletraffic
Congress (ITC 30), Vienna, Austria, 3–7 September 2018; Volume 1, pp. 209–217.

4. Nelson, L.; Van Geffen, J.; Torlak, E.; Wang, X. Specification and verification in the field: Applying
formal methods to just-in-time compilers in the Linux kernel. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), Virtual Conference, 4–
6 November 2020; pp. 41–61.

5. Bernstein, D. Containers and cloud: From LXC to docker to Kubernetes. IEEE Cloud Comput.
2014, 1, 81–84.

6. Høiland-Jørgensen, T.; Brouer, J.D.; Borkmann, D.; Fastabend, J.; Herbert, T.; Ahern, D.; Miller, D.
The express data path: Fast programmable packet processing in the operating system kernel. In
Proceedings of the 14th International Conference on Emerging Networking Experiments and
Technologies, Heraklion, Greece, 4–7 December 2018; pp. 54–66.

7. Fan, C.; Kaliyamurthy, N.M.; Chen, S.; Jiang, H.; Zhou, Y.; Campbell, C. Detection of DDoS
attacks in software defined networking using entropy. Appl. Sci. 2021, 12, 370.

8. Alashhab, Z.R.; Anbar, M.; Singh, M.M.; Hasbullah, I.H.; Jain, P.; Al-Amiedy, T.A. Distributed
Denial of Service Attacks against Cloud Computing Environment: Survey, Issues, Challenges and
Coherent Taxonomy. Appl. Sci. 2022, 12, 12441.

[14][17]

[13]

DoS Attack in Cloud Based Kubernetes Using eBPF | Encyclopedia.pub

https://encyclopedia.pub/entry/52013 6/6

9. Heidari, A.; Jabraeil Jamali, M.A. Internet of Things intrusion detection systems: A comprehensive
review and future directions. Clust. Comput. 2022, 2022, 1–28.

10. Heidari, A.; Navimipour, N.J.; Unal, M. A Secure Intrusion Detection Platform Using Blockchain
and Radial Basis Function Neural Networks for Internet of Drones. IEEE Internet Things J. 2023,
2023, 3237661.

11. Wang, S.-Y.; Chang, J.-C. Design and implementation of an intrusion detection system by using
extended BPF in the Linux kernel. J. Netw. Comput. Appl. 2022, 198, 103283.

12. Miano, S.; Bertrone, M.; Risso, F.; Tumolo, M.; Bernal, M.V. Creating complex network services
with eBPF: Experience and lessons learned. In Proceedings of the 2018 IEEE 19th International
Conference on High Performance Switching and Routing (HPSR), Bucharest, Romania, 18–20
June 2018; pp. 1–8.

13. Hohlfeld, O.; Krude, J.; Reelfs, J.H.; Ruth, J.; Wehrle, K. Demystifying the Performance of XDP
BPF. In Proceedings of the 2019 IEEE Conference on Network Softwarization (NetSoft), Paris,
France, 24–28 June 2019.

14. Liu, C.; Cai, Z.; Wang, B.; Tang, Z.; Liu, J. A protocol-independent container network observability
analysis system based on eBPF. In Proceedings of the 2020 IEEE 26th International Conference
on Parallel and Distributed Systems (ICPADS), Hong Kong, China, 2–4 December 2020; pp. 697–
702.

15. Bertin, G. XDP in practice: Integrating XDP into our DDoS mitigation pipeline. In Proceedings of
the Technical Conference on Linux Networking, Netdev, Montréal, QC, Canada, 6–8 April 2017;
Volume 2.

16. Miano, S.; Doriguzzi-Corin, R.; Risso, F.; Siracusa, D.; Sommese, R. Introducing smartnics in
server-based data plane processing: The DDoS mitigation use case. IEEE Access 2019, 7,
107161–107170.

17. Miano, S.; Risso, F.; Bernal, M.V.; Bertrone, M.; Lu, Y. A framework for eBPF-based network
functions in an era of microservices. IEEE Trans. Netw. Serv. Manag. 2021, 18, 133–151.

18. Abranches, M.; Michel, O.; Keller, E.; Schmid, S. Efficient Network Monitoring Applications in the
Kernel with eBPF and XDP. In Proceedings of the 2021 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), Heraklion, Greece, 9–11 November
2021; pp. 28–34.

Retrieved from https://encyclopedia.pub/entry/history/show/117692

