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In order to enable a holistic approach to design and planning, there is a need to integrate those data sources and combine

them with other more traditional methods of urban assessment. At the same time, there are still various concerns about

big data analytics based on AI-related tools connected, for example, with the accessibility to and accuracy of big data, as

well as the limitations of different types of AI-based tools which do not permit this kind of analytics to fully replace

traditional urban planning analyses. In terms of technological change, the application of big data in design and planning

may greatly support traditional planning methods and provide conditions for innovation; however, due to its limitations, it

can only enrich but in no way replace traditional urban studies.
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1. Introduction

Large volumes, velocities, varieties, and veracities of geo-referenced data, actively and passively produced by users,

bring more comprehensive insights into depicting socio-economic environments . With the widening access to big data

and their increasing reliability for studying current urban processes, new possibilities for analysing and shaping

contemporary urban environments have appeared . Emerging AI-based tools allow designing spatial policies enabling

agile adaptation to urban change . This article aims to investigate the possibilities provided by AI-based tools and urban

big data to support the design and planning of the cities, by seeking answers to the following questions: What is the

potential of using urban big data analytics based on AI-related tools in the planning and design of cities? How can AI-

based tools help in shaping policies to support urban change?

Existing studies show various applications of AI-based tools in different sectors of planning. Wu and Silva  review its role

in predicting land-use dynamics; Abduljabbar et al.  focus on transport studies, while Yigitcanlar et al.  analyse

applications of those tools in the context of sustainability. Other reviews focus on specific areas; for example, Raimbault 

focuses on artificial life, while Kandt and Batty  focus on big data. Allam and Dhunny  identify the strengths and

limitations of AI in the urban context but focus mainly on its role in building smart cities. Thus, there rarely exist studies

that focus on both urban big data analytics and AI-based tools in an urban context, which asks for a comprehensive

framework to assess, based on existing studies, the impact of the use of urban big data analytics using AI-related tools to

support the design and planning of cities. In order to bridge this gap, a conceptual framework to assess the influence of

the emergence of AI-based tools and urban big data on the design and planning of cities in the context of urban change

was made. The result of this framework is a typology of the use of AI and big data to support urban change. The article

determines the implications of the application of AI-based tools and geo-localised big data on both solving specific

research problems in the field of city design and planning, as well as on planning practice.

The paper is divided into six main sections. The introduction, presenting research questions, is followed by the description

of previous works enabling definition of the gap in the existing literature, which this paper addresses. The background

section presents a literature review with strong focuses on big data analytics and AI-based tools. The third section

includes the methodology applied in this paper. It is followed by analyses of data sources and types of AI-based tools

used in urban analytics. In the same section, various fields of use of AI-based tools and urban big data are discussed and

assessed in terms of the impact of AI and urban big data analyses on the design and planning of the cities. In the Results

Section, the main findings are discussed through the lens of the research questions and the state-of-the-art presented at

the beginning of this study. It allows for the identification of six major fields where these tools can support the planning

process. Finally, cognitive conclusions, recommendations for planning practice, and future application trends defining the

main points for big data and AI-based analysis to better reach policymakers and urban stakeholders are formulated and

followed by directions for further research.
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2. Background: Urban Change and the Opportunity to Use Big Data
Analytics and AI-Based Tools

After the industrial revolution, humankind entered the Anthropocene , as human activities are having increasing

impacts on the environment on all scales. At the same time, human settlements and cities are becoming more complex

than ever before. This complexity escaped the attention of researchers until the 1960s, when the science of cities started

to flourish . Further, the 1990s brought numerous applications of complexity theories to urban planning . In a

city, human behaviour is impacted by different factors, such as the urban microclimate, morphology, connectivity, and

accessibility of public and commercial facilities. To model this complexity, current cities require the introduction of new

forms of planning  based on profoundly critical engagement with cities, analysis of the interrelationships between

human activity and urban space, as well as intellectual and ethical guideposts for transformative actions . As urban

space is a dynamic system, composed of human and commercial activity, flows of energy and matter, and their

interactions , we can no longer analyse the urban environment as a static space built of structures and roads. At the

same time, in recent years, one can observe an increasing amount of big data mining applications in urban studies and

planning practices . Urban big data mining—i.e., extrapolating patterns and obtaining new knowledge from

existing data sources—allows new types of data to be used to improve system performance and to take full advantage of

its real-time nature . At the same time, these new insights can also be an advantage for urban planning analyses. In

this paper, the author argues that big data and AI-based tools applied in the planning of cities can describe this complexity

and help successfully manage urban change. This can be achieved by providing methods to model (including using big

data analytics based on AI-related tools) and conditions to manage urban processes which are influenced by urban

dynamics and the heterogeneity of the urban space. Due to its specificity, big data analyses can better support the

preparation of urban strategies and plans that answer the abovementioned challenges, which often need to be studied in

between the formal statutory scales of government .

Additionally, data-driven city planning based on urban big data analysis, planned and managed in real-time can support

those changes. Urban big data , also called geo-big data , allows for new types of more detailed analyses, which

can influence the design of cities and support the creation of data-based policies, plans, and projects. Real-time data

mining and pattern detection using high-frequency data can now be carried out on a large scale . Development of and

access to AI-based tools allow for fuller use of the potential of big data from different sources by both conducting analyses

that were previously impossible, such as object detection and categorisations in data-scarce environments (e.g., in the

study of urban informalities  or mapping cultural heritage ) but also advancing existing type of analyses (e.g.,

simulations of urban growth, which allow the study of the complexity of those processes ). Allam and Dhunny 

argue that the processing of big data through AI can increase the liveability of urban space and help to plan more

connected, efficient, and economically viable cities, which is why it is relevant to study the role of both big data analytics

and AI-based tools together.

Various urban research scholars argue that big data analytics supported by AI-based tools promise benefits in terms of

real-time prediction, adaptation, higher energy efficiency, higher quality of life, and accessibility . Data-driven

technologies, such as artificial intelligence, suggest ways to establish a new generation of GIS systems, as they enable

the building of frameworks connecting multiple data sources . AI-based tools are applied in the studies which require

accurate predictions with a high spatiotemporal resolution, such as urban traffic surveillance systems  and real-time

pedestrian flow analysis . Hao et al.  argue that big data analytics using AI-based tools could allow for regional

perspectives to be modelled at the individual level, to move from static total amounts to dynamic flows, and to reflect the

fine-grained scale of regional spatial changes. This approach, with the help of cellular automata and multi-agent systems,

was used by Rienow et al.  for forecasting urban growth. The emergence of advanced machine learning methods can

also provide unprecedented opportunities to model complex processes in shaping the cities of today . Amiri et al. 

apply machine learning to household transportation energy consumption, while Byon and Liang  focus on real-time

transportation mode detection. Moreover, numerous studies  confirm that, in various prediction tasks, machine

learning models can provide higher accuracy and efficiency than classic statistics. Deep learning, with its artificial neural

network algorithms, is often combined with cellular automata, e.g., for spatiotemporal modelling of urban growth , or

with fuzzy logic, e.g., for urban water consumption estimations .

The conducted review shows that the types of AI-based tools that are most widely used in urban planning are those from

the evolutionary computing and spatial DNA group: mostly artificial neural network  both of the convolutional 

and recurrent  types but also unsupervised machine learning, mainly self-organising maps (SOMs) . The next

most numerous group contains examples of the Knowledge-based intelligent systems group, where the most important
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tools are fuzzy logic  and rough sets . Studies by Varia  and Beura and Bhuyan  use a genetic algorithm to

model the dynamic flow of both cars and bikes. Additionally, artificial life—namely, cellular automata  and agent-

based models , are widely used in studies of urban growth.

3. Methodology

The aim of the paper, i.e., to investigate the possibilities provided by AI-based tools and urban big data to support the

design and planning of cities, was addressed by the creation of the conceptual framework to assess the influence of the

emergence of these tools on the design and planning. This framework was developed based on an integrative systematic

review of the current literature on the use of big data and AI in urban design and planning, which allows for the

identification of the relevant criteria for evaluation of the impact of AI-based tools on the design of cities—namely,

accessibility and reliability of data, as well as adaptability and replicability of those tools. The synthesis of the recent

studies justifies the introduction of classification of six main areas of use of urban big data analytics based on AI-related

tools. Further exploratory research analysing the current studies and applications in those categories aiming to support

urban change, followed by analyses of the most significant criteria of their evaluation—range of the analyses, type of AI-

based tools and data, impact on design and planning, strengths and limitations—were conducted.

In the data evaluation phase, this core literature was analysed from multiple perspectives. Due to the diverse

representation of primary sources, they were coded according to various criteria relevant to this entry: year of publication,

research centre, type of paper (theoretical, review, and experimental), type of data, and AI-based tools that were used.

This allowed for the identification of publications related to, among others, the most renowned data centres such as Media

Lab MIT, Senseable City Lab MIT, Centre for Advanced Spatial Analysis UCL, Future Cities Laboratory, and Urban Big

Data Centre. The final sample for this integrative review included empirical studies (64), theoretical papers (4), and

reviews (14). Only 9.7% of the papers were published before 2010. The main types of data used are mobile phone data,

volunteered geographic information data (including social media data), search engine data, point of interest data, GPS

data, sensor data, e.g., urban sensors, drones, and satellites, data from both governmental and civic equipment, and new

sources of large volume governmental data.

Data analysis started with the identification of opportunities and barriers to foster or prevent the use of big data and AI in

emerging urban practices. Strengths and limitations of the use of different types of urban big data analytics based on AI-

based tools were identified in both the review papers and the experimental studies from the literature corpus. This

analysis was conducted through the lenses of accessibility and reliability of data, as well as adaptability and replicability of

AI-related tools.

With the aid of qualitative content analysis of the literature corpus, the results were presented in the more systematic and

comparable form of a typology identifying the major fields of use of urban big data analytics based on AI-based tools. In

this step, all experimental studies were coded according to the defined six major fields of use. A synthesis in the form of

typology was developed to comprehensively portray the impact of AI-based tools and urban big data analytics on the

design and planning of cities.  Further analyses helped to define the of structure the results tables and to categorise the

impacts on the design and planning, strengths, and limitations of each field of use of urban big data analytics based on AI-

based tools. At the end of the paper, the main findings are discussed through the lens of the research questions

introduced at the beginning of this study: the author identified six major fields where these tools can support the planning

process to assess the potential of using urban big data analytics based on AI-related tools in the planning and design of

cities and the role of AI-based tools in shaping policies to support urban change. Finally, cognitive conclusions and

recommendations for planning practice—defining the main points for big data and AI-based analysis to better reach

policymakers and urban stakeholders—were formulated.

4. Urban Big Data Analytics with AI-Based Tools in the Design and
Planning of Cities

Recent years mark a rapid expansion of urban studies and planning practices using urban big data and AI-based tools. At

the same time, as it is still an emerging field, the impact on the design and planning of cities needs to be further assessed.

To this end, based on the introduced assessment framework, the author proposed a typology of the use of big data and

AI-based tools in urban planning with regard to their aim and range, types of AI-based tools and data being used, impact

on design and planning, as well as strengths and limitations.

Before introducing a framework to analyse urban processes using big data analytics, the full recognition and classification

of the data sources are needed . There are various typologies of data sources that can be defined as big data .

Their frequency and sample size are important features, so in this paper, the author defined, following a study by Hao et
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al. , big data as both high-frequency and low-frequency data with large sample sizes. The author proposed a typology

of urban big data based on the work of Thakuriah et al. , who argue that big data can be both structured and

unstructured data generated naturally as a part of transactional, operational, planning, and social activities in the following

categories: Sensor systems gathered data ( infrastructure-based or moving object sensors )— environmental, water,

transportation, building management sensor systems; connected systems; Internet of Things; drone, satellite, and LiDAR

data; User-generated content (‘ social’ or ‘ human ’ sensors )—participatory sensing systems, citizen science projects,

points of interest (POI), volunteered geographic information (VGI), web use, e.g., search engine data, mobile phone data

(MPD), GPS log data from handheld GPS devices, online social networks, and other socially generated data;

Administrative (governmental) data (open and confidential microdata) —open administrative data on taxes and revenue,

payments and registrations; confidential personal microdata on employment, health, welfare payments, education records,

detailed digital land use data, parcel data, and road network data; Private-sector data (customer and transactions records)

—store cards and business records, smart card data (SCD), fleet management systems, GPS data from floating cars

(Taxis), data from application forms; usage data from utilities, and financial institutions; Historical urban data, arts and

humanities collections —repositories of text, images, sound recordings, linguistic data, film, art, and material culture, and

digital objects, and other media; Hybrid data (linked and synthetic data) —linked data including survey—sensor or census

—administrative records.

The use of big data rises technological and methodological challenges, as well as complexities regarding the scientific

paradigms and planning trends. In the context of the design and planning of cities, based on the conducted literature

review, one can define six major fields of use of AI-based tools and urban big data, as described in Table 1 : (1) analyses

of regional linkages and polycentric spatial structure; (2) urban spatial structure and dynamic; (3) urban flows; (4) urban

morphology and digital urban image; (5) the behaviour and opinions of urban dwellers; (6) urban health, microclimate, and

environment. While there are various ways to organise big data analyses for urban research and applications, the

grouping here is primarily informed by both the subject and type of analyses, but other factors such as the methods of

generation and access to data, together with its strengths and limitations, were also considered. This typology is not

mutually exclusive; for example, analyses of spatial mobility patterns might be used to study urban dynamics and the

behaviour of urban dwellers.

Table 1. Impact of IA algorithm-based tools in the design and planning of cities.

Fields of Use Aim and Range Research
Studies Types of AI-Based Tools Impact on Design and

Planning

Regional
linkages and
polycentric
spatial
structure
analyses

Analyses of flows of people,
goods, capital, and information
among regions and cities;
various kinds of economic,
social, and spatial linkages
among cities; urban
boundaries and spatial
expansion simulation;
performance of spatial
structures at regional/urban
scale

Knowledge-based
intelligent systems–
(Fuzzy Logic, Rough
Sets); Evolutionary
computing and spatial
DNA–(Artificial Neural
Networks); Artificial life–
(Cellular Automata, Agent-
Based Models)

Can reflect complex

features, e.g., mobility,

ambiguity, and

spatiotemporal

dynamics

Support evolution from

the urban hierarchy to

modelling urban

networks;

Allow the description of

urban flows from the

individual level,

reflecting the fine-scale

of regional changes

Allow assessing the

spatiotemporal evolution

of urban networks
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Fields of Use Aim and Range Research
Studies Types of AI-Based Tools Impact on Design and

Planning

Urban spatial
structure and
dynamic
analyses

Analysing the spatial structure
and ‘pulse of the city’; study of
functional structure based on
citizens activities; spatial
mobility patterns; recognition
of spatial characteristic of
commercial centres and public
spaces; Point of Interest
analysis applied to advanced
land-use identification and
urban structure analysis

Knowledge-based
intelligent systems–
(Fuzzy Logic, Rough
Sets); Evolutionary
computing and spatial
DNA–(unsupervised
machine learning–SOM,
Artificial Neural
Networks); Artificial life–
(Cellular Automata, Agent-
Based Models)

High-frequency data

allow for the study of the

growing dynamics and

liquidity of the spatial

structure of cities

Allow for refinement of

spatiotemporal

interactions

Can help planning in a

data-scarce

environment

Could lay a foundation

for optimisation of urban

land classification

standards

Urban flows
analyses

Urban traffic analyses and
determination of the capacity
of transport networks;
analyses of transportation
connectivity; analysis of jobs-
housing balance and
commuting corridors; energy
planning models

Intelligent stochastic
simulation models–
(Genetic Algorithms);
Evolutionary computing
and spatial DNA–(Artificial
Neural Networks,
reinforced learning)

Analyses of patterns

embedded in the

network of MPD

interaction and

smartphone users’

movements can support

transport system

optimisation and spatial

structure improvements

Due to its spatial

accuracy, can also

support spatial planning

and transport

organisation at the

meso- and community-

planning scale
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Fields of Use Aim and Range Research
Studies Types of AI-Based Tools Impact on Design and

Planning

Urban
morphology
analyses

Analyses of the change of
urban form and evaluation of
land-use planning; landscape
analyses; study the process of
formation and transformation
of human settlements; digital
expression of city image;
evaluation of urban form;
evaluation of liveability of
urban space, e.g., based on
urban point of interest data

Knowledge-based
intelligent systems–
(Rough Sets);
Intelligent stochastic
simulation models–
(Genetic Algorithms);
Evolutionary computing
and spatial DNA–
(unsupervised machine
learning–self-organising
maps, Artificial Neural
Networks);

allow for the evaluation

of public spaces and

creation of typologies

based on large samples

urban image as a kind

of human-based data

can help to reveal the

cityscape at the

pedestrian level and

assist enhancement of

the urban landscape

can reduce the need for

extensive fieldwork:

interviews,

neighbourhood tours,

and expert consultation

Analyses of the
behaviour and
opinion of
urban dwellers

Study of the spatial pattern of
behaviour of individuals,
visualisation of social
networks; recognition and
simulation of individual
mobility; simulation of the
behaviour characteristics of
both residents and visitors as
well as their trajectories;
analysis of sentiments

Knowledge-based
intelligent systems—
(fuzzy logic); evolutionary
computing and spatial
DNA; machine learning
artificial neural networks;
artificial life (cellular
automata)

Reflect dynamic

attributes at the

spatiotemporal scale:

preference, emotions,

and satisfaction of

individuals

Allow for new types of

analyses based on

specific behavioural

patterns and as such

can provide more

reasonable and

accurate explanations

for evolution

mechanisms of complex

systems
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Fields of Use Aim and Range Research
Studies Types of AI-Based Tools Impact on Design and

Planning

Urban health,
microclimate,
and
environment
analyses

Analyses of the resilience of
urban structures; analyses of
urban microclimate and urban
heat islands; analyses of major
environmental threats, e.g.,
flooding, heat or air quality;
participatory sensing of urban
space

Knowledge-based
intelligent systems–
(Fuzzy Logic); Intelligent
stochastic simulation
models–(Genetic
Algorithms); Evolutionary
computing and spatial
DNA–(reinforced machine
learning, Artificial Neural
Networks)

By the inclusion of user-

generated content, and

data from participatory

action research, more

detailed analyses of the

resilience of urban

structures can be

supported

Can help to measure

ecological behaviour

and support urban

planning practices that

promote such behaviour

If based on regular

image acquisitions, can

be especially valuable to

track temporal changes

Those analyses mainly measure individual behaviour data at different spatiotemporal scales using spatial, temporal, and

individual attributive data. To assess the impact of those technologies, it is vital to define different scales of intervention of

new AI and urban big data analysis starting from local fine-grained analyses of urban spaces such as street and plaza

(possible due to geolocation) through the neighbourhood, and up to the city or even regional scale (allowing to study

functional connections).
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