

Biological and Chemical Diversity of *Angelica archangelica* L.

Subjects: **Plant Sciences**

Contributor: Milica Aćimović , Milica Rat , Lato Pezo , Biljana Lončar , Milada Pezo , Ana Miljković , Jovan Lazarević , Milica Aćimović

Garden angelica (*Angelica archangelica* L.), native to the northern temperate region, is widespread in Europe and Asia. Since the middle ages, it has been used for healing and as a vegetable in traditional dishes. In the modern era, it has been proven that *A. archangelica* has a complex chemical composition. The main derivatives that contribute to the plant's biological activities are essential oil and coumarins.

angels root

Apiaceae

Garden angelica

1. Introduction

Angelica archangelica L. (syn. *A. officinalis* Hoff.), garden angelica, or The Root of the Holy Ghost, is a well-known medicinal plant with doubtful native range, but best known as Norwegian angelica. Distribution is limited to the northern temperate region of Europe, from Northern Fennoscandia to Eastern Siberia, and the natural habitat of this plant extends up to the Himalayas, while it is cultivated in most other regions [1][2][3]. It mostly grows in moist places in the mountains and in mountain valleys. It can be found in the lowlands of the far north [4]. It was highly valued in the Middle Ages and traded to Continental Europe by the Vikings as food (for flavoring liqueurs and aquavits, omelets, trout, to be made into jam, and as a preservative for reindeer milk) and a medicinal plant (as a calming remedy for treating hysteria, seizures, hypertension, rheumatism, and biliary diseases, as well as plague) [2][5][6]. It is known that this plant was associated with the magic of protection against evil spirits and witchcraft, as well as for healing [7][8][9]. Furthermore, the whole plant can be used as a vegetable (roots, young shoots, leaves, and seeds) if harvested appropriately [10].

In Europe, apart from Nordic countries (Finland, Sweden, Norway, Denmark, Greenland, the Faroe Islands, and Iceland), *A. archangelica* is cultivated in Poland, Germany, the Netherlands, Belgium, France, Austria, Hungary, and Romania, while it is often grown in Asia in Central Russia, as well as in India and Thailand [11][12][13][14][15][16]. In Serbia, *A. archangelica* is a rare plant in natural and semi-natural habitats [17]; however, due to good prices and the constant demand for essential oil, there is considerable interest in cultivating this essential-oil-bearing crop [18][19].

2. Biological Characteristics

Angelica archangelica L. 1753 is a bi-annual or perennial plant from the Apiaceae family. In the first year of growing, it produces a rosette of large (30–70 cm in length), compound leaves with a hollow, tubular leaf stalk.

During the first year, it accumulates nutrients in long, spindle-shaped, thick roots with a yellowish–grey epidermis. If the fresh root is bruised, it oozes honey-colored juice. In the second year, it forms erect flower stalks, up to 2 m tall, with ridges and grooves, hollow and tinged with purple, not glaucous. Basal leaves are huge, two-pinnate, and glabrous. Cauline leaves are two-pinnate with petioles strongly sheathed at the base, while upper leaves are reduced to inflated sheaths, which enclose the development of inflorescences, of the umbel type. Umbels are spherical (10–15 cm or more in diameter), with greenish–white flowers. It is a self-pollinated plant. Fruit is a schizocarp consisting of two mericarps, oblong, slightly dorso-ventrally flattened, glabrous, with prominent and acute dorsal ridges and developed marginal wings. The monocarpic plant wilts and dies after seed maturation. If the flowering stem is gathered before flowering and seed maturation, the plant's lifetime is prolonged (perennial). When damaged, the whole plant emits a strong aromatic scent, which could be described as terpenic, fresh, celeriac, and sweet [2][3][4][8][20][21][22].

The native range of the species covers the northern temperate region of Europe and Asia, from Northern Fennoscandia to Eastern Siberia, and the natural habitat of this plant extends up to the Himalayas. In the native range, the species are distributed along riverbanks and coastal zones, moving towards higher altitudes, where it also prefers moist or wet habitats [1][23][24][25][26].

Genus *Angelica* comprises 15 species with distribution in Europe and the Mediterranean, while in Serbia, five are present [17][27]. Among them, *Angelica archangelica* stands out as well known in folk medicine as angel root, primarily due to its traditional medicinal use. Within the species *A. archangelica*, more infraspecific taxa have been identified over time [28]. According to modern taxonomic treatment, three subspecies are accepted within the species *A. archangelica* subsp. *archangelica*, *A. archangelica* subsp. *litoralis* (Fr.) Thell, earlier known as *A. litoralis* Fr., and *A. archangelica* subsp. *decurrens* (Ledeb.) B. Fedtsch., formerly accepted as a species [29]. The populations from the Himalayas are recognized as taxon *A. archangelica* subsp. *himalaica* (C.B.Clarke) G.Singh & G.M.Oza [30]. Although numerous authors have lately classified populations from the Himalayas as *A. angelica* subsp. *archangelica* var. *himalaica* [29], differences in fruit size and the chemical composition of the root essential oil, followed by the geographical isolation of the population, indicate that it should be treated as a subspecies *A. archangelica* subsp. *himalaica* (C.B.Clarke) G.Singh & G.M.Oza, or eventually species, *A. himalaica* Clarke, due to geographical and ecological isolation. Further investigations need to be conducted to resolve this taxonomical and nomenclature problem. In addition, it is noted that a correlation exists between habitat preferences and fruit morphology, i.e., the smallest fruits are characteristic for subsp. *litoralis* (distributed at the seashore), followed by subsp. *archangelica* (distributed in continental and mountain regions), while the largest are in the populations from the Himalayas [22][30].

Contrary to some authors, who describe some characteristics as useful for *Angelica* species identification, followed by studies in which even subspecies can be clearly distinguished, [22][31][32], there are also scientists who claim that the genus *Angelica* has highly variable morphological traits, which leads to difficulty in recognition of both species and infraspecific taxa [21][33][34]. By comparing the native range of the above infraspecies taxa, geographical separation in four areas is noticeable. On the other hand, considering that Central Europe (excluding Poland, which belongs to the native range of species), moving further south and southeast, is treated as an arched area

for *Angelica archangelica*, overlapping distribution areas of European subspecies in this region support the given taxonomic approach [27][35][36][37].

Nowadays, it is valued primarily as a cultivated species, often used as a medicinal herb. In Southern and Southeastern Europe, both subsp. *archangelica* and subsp. *litoralis* are recorded as cultivated and as naturalized along river banks or in moist forests [17][21][31][35][36]. Since representatives out of cultivation are rare, it is not considered an invasive species, but rather a casual alien without or with a negligible impact on nature. This trait is important considering the need to grow this plant for pharmaceutical and medicinal use.

3. Chemical Composition and Biological Activities

A. archangelica has a complex chemical composition [38]. Apart from essential oil and coumarins, which contribute to the plant's biological activities [39], it contains glycosides, carbohydrates, phytosterols, saponins, phenols, fixed oil, and fats [40], which influence its nutraceutical potential [10].

Furanocoumarins (such as archangelicin, bergapten, xanthotoxin, imperatorin, osthole, and others) [41][42] are constituents responsible for the antibacterial, [43] antiviral, [44] anti-inflammatory, [45] antitumor [46][47], hepatoprotective, [48] antidepressant [42], and other activities, as well as for phototoxicity [49]. For these reasons, the European Medicines Agency (EMA) commission pointed out risks associated with furanocoumarins in preparations of *A. archangelica* [50].

References

1. Vashistha, R.; Nautiyal, B.P.; Nautiyal, M.C. Conservation status and morphological variations between populations of *Angelica glauca* Edgew. and *Angelica archangelica* Linn. in Garhwal Himalaya. *Curr. Sci.* 2006, 91, 1537–1542.
2. Rautio, A.M.; Linkowski, W.A.; Ostlund, L. They followed the power of the plant': Historical Sami harvest and traditional ecological knowledge (TEK) of *Angelica archangelica* in northern Fennoscandia. *J. Ethnobiol.* 2016, 36, 617–636.
3. Teixidor-Toneu, I.; Kjesrud, K.; Kool, A. Sweetness beyond desserts: The cultural, symbolic, and botanical history of angelica (*Angelica archangelica*) in the Nordic Region. *J. Ethnobiol.* 2020, 40, 289–304.
4. Fossa, O. Angelica: From Norwegian mountains to the English trifle. In Wild Food—Proceedings of the Oxford Symposium on Food and Cookery; Hosking, R., Ed.; Prospect Book: London, UK, 2004; pp. 131–142.
5. Holm, Y.; Vuorela, P.; Hiltunen, R. Enantiomeric composition of monoterpane hydrocarbons in n-hexane extracts of *Angelica archangelica* L. roots and seeds. *Flavour Fragr. J.* 1997, 12, 397–

400.

6. Yankova-Tsvetkova, E.; Semerdjieva, I. On the reproductive biology of *Angelica archangelica* L. (Apiaceae). *Int. J. Adv. Res. Biol. Sci.* 2015, 2, 270–277.
7. Mathias, M.E. Magic, myth and medicine. *Econ. Bot.* 1994, 48, 3–7.
8. Bhat, Z.A.; Kumar, D.; Shah, M.Y. *Angelica archangelica* Linn. is an angel on earth for the treatment of diseases. *Int. J. Nutr. Pharmacol. Neurol. Dis.* 2011, 1, 36–50.
9. Chauhan, R.S.; Nautiyal, M.C.; Cecotti, R.; Mella, M. Variation in the essential oil composition of *Angelica archangelica* from three different altitudes in Western Himalaya, India. *Ind. Crops Prod.* 2016, 94, 401–404.
10. Aćimović, M. Nutraceutical potential of Apiaceae. In *Bioactive Molecules in Food, Reference Series in Phytochemistry*; Mérillon, J.M., Ramawat, K.G., Eds.; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2019; pp. 1311–1341.
11. Doneanu, C.; Anitescu, G. Supercritical carbon dioxide extraction of *Angelica archangelica* L. root oil. *J. Supercrit. Fluids.* 1998, 12, 59–67.
12. Eeva, M.; Ojala, T.; Tammela, P.; Galambosi, B.; Vuorela, H.; Hiltunen, R.; Fagerstedt, K.; Vuorela, P. Propagation of *Angelica archangelica* plants in an air-sparged bioreactor from a novel embryogenetic cell line, and their production of coumarins. *Biol. Plant.* 2003, 46, 343–347.
13. Goransson, M.; Solberg, S.; Brantestam, A.K. Genetic diversity in angelica (*Angelica archangelica* L.) populations assessed by ISSR molecular markers. *Fræðaþing Landbúnaðarins* 2011, 8, 264–269.
14. Popescu, G.C.; Motounu, M.; Alexiu, V. Some ecophysiological and edaphic parameters of *Angelica archangelica*, a threatened high altitude aromatic herb from Romanian Carpathian Mountains. *Acta Hort.* 2012, 955, 303–307.
15. Maurya, A.; Verma, S.C.; Gupta, V.; Shankar, M.B. *Angelica archangelica* L.—A phytochemical and pharmacological review. *Asian J. Res. Chem.* 2017, 10, 852–856.
16. Spałek, K.; Spielvogel, I.; Proćkow, M.; Proćkow, J. Historical ethnopharmacology of the herbalists from Krummhübel in the Sudety Mountains (seventeenth to nineteenth century), Silesia. *J. Ethnobiol. Ethnomedicine* 2019, 15, 24.
17. Nikolić, V. Rod Angelica L. In *Flora of SR Serbia*; Josifović, M., Ed.; Serbian Academy of Art and Science: Belgrade, Serbia, 1973; Volume 5, pp. 272–273.
18. Vukomanović, L.M.; Stepanović, B. Production and economical aspects of *Angelica arcangelica* L. in central regions of Serbia. *Ekon. Poljopr.* 1996, 43, 339–346.

19. Lazarević, J.; Dragumilo, A.; Marković, T.; Savić, A.; Božić, D. Weed control in angelica (*Angelica archangelica* L.). *Acta Herbol.* 2020, 29, 129–139.
20. Kerrola, K.M.; Kallio, H.P. Extraction of volatile compounds of angelica (*Angelica archangelica* L.) root by liquid carbon dioxide. *J. Agric. Food Chem.* 1994, 42, 2235–2245.
21. Dihoru, G.; Pauca-Comanescu, M.R.I. Analysis of the characters on some *Angelica* taxa. *Rom. J. Biol.—Plant. Biol.* 2011, 56, 80–89.
22. Daskin, R.; Kaynak, G. *Angelica archangelica* (Apiaceae), a new species to Turkey: A contribution to its taxonomy and distribution. *Phytol. Balc.* 2012, 18, 5–9.
23. Thelung, A. *Ubelliferae*. In *Illustrierte Flora von Mitteleuropa*; Hegi, J.F.G., Ed.; Lehmann Verlag: München, Germany, 1926; Volume 5-II, pp. 1338–1341.
24. Meusel, H.; Jager, E.J.; Braumügam, S.; Knapp, H.D.; Rauschert, S.; Weinert, E. *Vergleichende Chorologoie der Zentraleuropäischen Flora*; Martin-Luther Universität Halle-Wittenberg: Jena, Germany, 1992; Volume 2, pp. 20–321.
25. Ojala, A. Variation of *Angelica archangelica* subsp. *archangelica* (Apiaceae) in northern Fennoscandia: 4. Pattern of geographic variation. *Ann. Bot. Fenn.* 1986, 23, 23–31.
26. Frobert, L. *Angelica archangelica* L. In *Flora Nordica*; Jonsell, B., Karlsson, T., Eds.; Swedish Royal Academy of Sciences: Stockholm, Sweden, 2010; Volume 6, pp. 181–185.
27. Hand, R. *Apiaceae*. In *Euro + Med Plantbase—The Information Resource for Euro-Mediterranean Plant Diversity*; Published on the Internet; Available online: <http://ww2.bgbm.org/EuroPlusMed/> (accessed on 9 February 2022).
28. Weinert, E. Die Taxonomische Stellung und das Areal von *Angelica archangelica* L. und *A. lucida* L. *Feddes Repert.* 1973, 84, 303–313.
29. The Plant List. Version 1.1. Published on the Internet. 2013. Available online: <http://www.theplantlist.org/> (accessed on 9 February 2022).
30. Singh, G.; Oza, G.M. Nomenclatural note on the Indian Archangelica. *Bull. Bot. Surv. India.* 1974, 16, 167–169.
31. Stroh, P.; Scott, W. *Angelica archangelica* subsp. *litoralis* (Apiaceae)—A new native taxon for Britain. *New J. Bot.* 2017, 7, 57–58.
32. Forycka, A.; Buchwald, W. Variability of composition of essential oil and coumarin compounds of *Angelica archangelica* L. *Herba Pol.* 2019, 65, 62.
33. Ojala, A. Variation of *Angelica archangelica* subsp. *archangelica* (Apiaceae) in northern Fennoscandia: 1. Variation in fruit morphology. *Ann. Bot. Fenn.* 1984, 21, 103–115.

34. Liao, C.; Downie, S.R.; Li, Q.; Yu, Y.; He, X.; Zhou, B. New insights into the phylogeny of Angelica and its allies (Apiaceae) with emphasis on East Asian species, inferred from nrDNA, cpDNA, and morphological evidence. *Syst. Bot.* 2013, 38, 266–281.

35. Yankova, E.; Cherneva, Z. Notes on the species distribution of genus Angelica in Bulgaria. *Phytol. Balc.* 2007, 13, 189–192.

36. Nikolić, T. (Ed.) *Flora Croatica Baza Podataka*, Prirodoslovno-Matematicki Fakultet, Sveučilište u Zagrebu. Available online: <http://hirc.botanic.hr/fcd> (accessed on 9 February 2022).

37. Pladias—Database of the Czech Flora and Vegetation. Available online: www.pladias.cz (accessed on 9 February 2022).

38. Joshi, R.K. Angelica (*Angelica glauca* and *A. archangelica*) oils. In *Essential Oil in Food Preservation, Flavour and Safety*; Preedy, V.R., Ed.; Academic Press: Amsterdam, The Netherlands, 2016; pp. 203–208.

39. Kaur, A.; Bhatti, R. Understanding the phytochemistry and molecular insights to the pharmacology of *Angelica archangelica* L. (Garden angelica) and its bioactive components. *Phytother. Res.* 2021, 35, 5961–5979.

40. Kumar, D.; Bhat, Z.A.; Kumar, V.; Chashoo, I.A.; Khan, N.A.; Shah, M.Y. Pharmacognostical and phytochemical evaluation of *Angelica archangelica* Linn. *Int. J. Drug Dev. Res.* 2011, 3, 173–188.

41. Muller, M.; Byres, M.; Jaspars, M.; Kumarasamy, Y.; Diddleton, M.; Nahar, L.; Shoeb, M.; Sarker, S. 2D NMR spectroscopic analyses of archangelicin from the seeds of *Angelica archangelica*. *Acta Pharm.* 2004, 54, 277–285.

42. Kaur, A.; Garg, S.; Shiekh, B.A.; Singh, N.; Singh, P.; Bhatti, R. In silico studies and in vivo MAOA inhibitory activity of coumarins isolated from *Angelica archangelica* extract: An approach toward antidepressant activity. *ACS Omega* 2020, 5, 15069.

43. Mišić, D.; Ašanin, R.; Jasna, I.; Žižović, I. Investigation of antibacterial activity of supercritical extract of plants, as well as of extract obtained by other technological processes on some bacteria isolated from animals. *Acta Vet.* 2009, 59, 557–568.

44. Rajtar, B.; Skalicka-Woźniak, K.; Świątek, Ł.; Stec, A.; Boguszewska, A.; Polz-Dacewicz, M. Antiviral effect of compounds derived from *Angelica archangelica* L. on Herpes simplex virus-1 and Coxsackievirus B3 infections. *Food Chem. Toxicol.* 2017, 109, 1026–1031.

45. Kaur, A.; Singh, N.; Bhatti, M.S.; Bhatti, R. Optimization of extraction conditions of *Angelica archangelica* extract and activity evaluation in experimental fibromyalgia. *J. Food Sci.* 2020, 85, 3700–3710.

46. Sigurdsson, S.; Ogmundsdottir, H.M.; Gudbjarnason, S. Antiproliferative effect of *Angelica archangelica* fruits. *Z. Naturforsch.* 2004, 59, 523–527.

47. Sigurdsson, S.; Ogmundsdottir, H.M.; Hallgrímsson, J.; Gudbjarnason, S. Antitumor activity of *Angelica archangelica* leaf extract. *In Vivo* 2005, 19, 191–194.
48. Yeh, M.L.; Liu, C.F.; Huang, C.L.; Huang, T.C. Hepatoprotective effect of *Angelica archangelica* in chronically ethanol-treated mice. *Pharmacology* 2003, 68, 70–73.
49. Knapp, C.F.; Elston, D.M. Botanical briefs: Garden angelica (*Angelica archangelica*). *Cutis* 2009, 84, 189–190.
50. EMEA/HMPC/317913/06. Reflection Paper on the risks associated with furocoumarins contained in preparations of *Angelica archangelica* L. In European Pharmacopoeia, 10th ed.; European Directorate for the Quality of Medicine & Health Care of the Council of Europe (EDQM): Strasbourg, France, 2017.

Retrieved from <https://encyclopedia.pub/entry/history/show/61626>