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Autism spectrum disorder (ASD) is rather common, presenting with prevalent early problems in social

communication and accompanied by repetitive behavior. There is no cure for ASD, and there is currently no

medication to treat it. The medications are prescribed mainly to treat self-injury, inability to focus, anxiety and

depression (SSRIs), aggression (alpha-2 adrenergic agonist, Clonidine) and hyperactivity (dopamine and

noradrenaline stimulant methylphenidate, Ritalin). Strategies to treat the core symptoms of ASD are directed to

correct synaptic dysfunctions, abnormalities in central VP, OT and serotonin neurotransmission, and

neuroinflammation. 

autism spectrum disorder  vasopressin  social behavior  stereotype behavior

1. Available Therapies with Possible Vasopressinergic
Contribution

Among the most prescribed medications for autism , the following VP interactions can be supposed:

From the second-generation antipsychotics used for the treatment of irritability, cariprazine is promising and their

serotoninergic effect suggest a possible VPergic contribution .

For the improvement of mood, as well as to reduce the frequency and intensity of repetitive behaviors and improve

eye contact, SSRIs are often used. In this regard, VP–serotonin interaction might contribute to the possible

effectiveness of aggression treatment using SSRIs .

As regards methylphenidate (Ritalin), a dopamine (DA) reuptake inhibitor, it is used as a stimulant for the treatment

of hyperactivity (paradoxically) and lack of attention in ASD. It was shown that it may influence the VP system 

and it acts—at least partly—via the V  receptor .

Alpha2-agonist (e.g., Clonidine) may be used for ASD-related hyperactivity, attention deficit, and aggression, and

may interact with VP on the cardiovascular function. Indeed, i.c.v. Clonidine administration-induced pressor

response was prevented by i.c.v. V  antagonist administration in rats . Interestingly, in humans, Clonidine

administration decreased plasma VP levels . In horses, no interaction was found between Clonidine and VP on
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HPA axis ; however, in rats, Clonidine reduced the firing of SON VPergic cells, further supporting an interaction at

the level of water balance .

As for applied behavior analysis (ABA), in a backtranslation study using ASD model mice, this intervention

normalized VP and V  expression in several brain areas, including MeA .

Even transcutaneous electrical acupoint stimulation elevated VP levels in connection with an improvement of ASD

symptoms .

Although experts do not recommend any specific diets for children (not even gluten- or casein-free), some

probiotics might improve gastrointestinal symptoms . As a possible link to VP, in prairie voles, Limosilactobacillus

reuteri administration resulted in lower anxiety, but also lower social affiliation in female but not male individuals,

with a decrease in PVN V  expression .

For a summary, see Figure 1.

Figure 1. Treatment options in autism with contribution of vasopressin. VP might contribute to the effectiveness of

presently available therapies (blue). However, VP alone (yellow) or its antagonists (orange) can be used for

therapy. Most of the treatments aim to improve social skills; however, sometimes the results are questionable (+/−).

Abbreviations: ASD: autism spectrum disorder; SSRI: selective serotonin reuptake inhibitor; V : vasopressin 1a

receptor; VP: vasopressin.

2. Influencing the Vasopressinergic System in Autism-
Related Problems
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Besides the aforementioned indirect effects, the direct influence on the VP pathway might have therapeutic

potential on its own.

As VP does not cross the blood–brain barrier , for influencing the central VPergic system, i.c.v. or i.n. application

is preferable.

In a rat VPA model, acute i.c.v. VP administration prevented social-interaction-induced brain activation based on

blood oxygenation level (BOLD) signal in fMRI .

2.1. Intranasal Vasopressin Application

In rats, i.n. VP treatment (from PND 21 for 3 weeks) improved maternal VPA injection-induced (E12.5) social deficit,

elevated the serum VP level and corrected expression changes related to synaptic and axon dysplasia and

oligodendrocyte development in the PFC  and amygdala .

In male, but not female, marmosets, i.n. VP administration reduced food sharing with increased aggressive

vocalization . Accordingly, in monogamous male prairie voles , as well as in the coppery titi monkey

(Callicebus cupreus) , a similar treatment reduced partner preference. These preclinical results did not suggest

a possible positive effect on ASD symptoms.

However, when VP was administered i.n. for 4 weeks in ASD children aged 6–13 years in a phase 2 randomized

clinical trial, improved social responsiveness and social abilities with decreased anxiety and limited repetitive

behavior were reported . The response was the strongest in high-plasma VP patients, and depended on the

expression pattern of the V  and OTR receptors. The latter might explain the controversially decreased anxiety, as

V  receptors were more involved in this stress-related disorder. In contrast, a randomized, double-blind, placebo

controlled, between-subjects design on 125 undergraduate students (with 41 placebo, 30 females in each), using

i.n. VP administration, did not find any effect on social outcomes . In support, i.n. VP administration in rats failed

to influence social recognition , despite previous effectiveness of the direct olfactory bulb manipulation .

Moreover, in healthy male volunteers, i.n. VP administration decreased goal-directed top-down attention control to

social salient stimuli with an increase in bottom-up social attentional processing . This effect was similar to OT

administration and accompanied by an anxiolytic effect as well. In another study on face processing, a single low-

dose i.n. VP (20 IU) administration to men decreased social assessments with a most pronounced effect in V  risk

allele carrier subjects . This suggest that via i.n. application, significant amounts of VP might not reach

behaviorally relevant areas in the brain described previously as targets for the central administration of the peptide

.

For other ASD-related alterations, where possible VP contribution was suggested (Figure 2), the following

treatment effects were found:
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Figure 2. Alterations in autism spectrum disorders with possible contribution of vasopressin. The observations

were mainly in animals. Both social problems and repetitive behaviors—depicted in the middle—are core features

of autism spectrum disorders and VP is obviously implicated in them. Peripheral VP functions (blue) might be only

indirectly linked to autism, while other central VP effects (orange) might have a more important, although not yet

fully clarified role. Abbreviations: ANS: autonomous nervous system; HPA: hypothalamic pituitary adrenocortical

axis, VP: vasopressin.

The activity of brain regions implicated in emotion processing was altered by i.n. VP treatment . In this regard, in

humans, i.n. VP regulated the processing of infant cry sounds with emotional contextual information in fathers .

In male volunteers, i.n. VP administration increased approaching ratings to some faces, together with increased

processing suggested by higher N1 amplitude on the electroencephalograph; however, this effect was highly

context-dependent . Another study using fMRI in healthy male subjects reported reduced amygdalar activation

to emotional faces after i.n. VP administration . In contrast, another study reported enhanced neural pattern in

the right amygdala to social–emotional stimuli observed via MRI .

As mentioned before, i.n. VP administration was also able to reduce pain in relation to postoperative orthopedic

surgery .

Regarding its thermoregulatory role, i.n. VP (more specifically desmopressin, a V  receptor-selective agonist)

reduced persisting coldness after brain injury in six patients .

In contrast, i.n. VP administration exacerbated physiological ANS parameters in combat veterans .

In healthy, elderly subjects, i.n. VP promoted sleep time and improved sleep architecture , reinforcing the

potential beneficial effect of VP in ASD treatment. However, it was ineffective as regards verbal memory function

.
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2.2. Vasopressin Antagonist Treatment

In recent years, vasopressin receptor antagonists have been in the spotlight of drug discovery, especially V

selective molecules . Publishing Balovaptan as a possible treatment for ASD greatly increased the interest in

CNS-acting vasopressin antagonists. Although clinical trials were unsuccessful in many cases, there is still

potential in the VP antagonists as shown by several currently ongoing clinical studies.

The main focus is on V  receptor antagonists. In this context, SRX246, a V  receptor antagonist, blocked the

effect of i.n. VP administration-induced reduced amygdalar activation to angry faces . Moreover, in 2017, a

multicenter double-blinded crossover study found that single-dose intravenous (i.v.) infusion of RG7713, a highly

selective V  antagonist in adult males with high-functioning ASD, resulted in a subtle but statistically significant

improvement in social communications and social sensitivity . As a follow up, the VP Antagonist to Improve

Social Communication in Autism (VANILLA), a double-blinded placebo controlled clinical trial, examined 223 adult

men with high-functioning ASD using another selective V  receptor antagonist, RG7714 (commercially known as

Balovaptan) for 3 months . The treatment was well tolerated and resulted in improvement in communication and

socialization scores, though not in all aspects of the ASD spectrum (e.g., social responsiveness was not improved).

Despite effectiveness during the phase 2 trial , in subsequent phase 3 trials in high-functioning children (5–17-

year)  and adults (above 18-year) , the 6-month Balovaptan treatment was ineffective as regards social

communication.

Other selective V  receptor antagonists (like the orally active Relcovaptan) might be effective as regards comorbid

epilepsy . On the other hand, for many years, V  receptor antagonists were developed to treat mood disorders.

Despite previous ineffectiveness in major depression , V  receptor antagonists might be effective in

subpopulations  and are therefore still under development (e.g., THY1773 , TS-121 , ABT-436 ). We

cannot ignore V  receptors either, as Tolvaptan, a V  antagonist was implicated in the treatment of tuberous

sclerosis, a genetic ASD, in a case report  (Table 1).

Table 1. Animal models of autism with possible contribution of vasopressin.
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Model Major Problems ReferencesType Name/Implicated Molecule

Genetic models

KO

OTR soc.

CNTNAP2 soc., com.

MAGEL2 soc.

OPRM1 soc.

Klf7 soc., rep.

Fragile X FMR1
soc., rep., motor problem,
mood
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Abbreviations: CNTNAP2: Contactin Associated Protein 2; Com: communication problems; Fragile Mental

Retardation 1 locus (FMR1); GAP43: synaptic growth-associated protein-43; GLUT3: neuronal glucose transporter

isoform 3; klf7: Krüppel-like factor 7; KO: knockout; LPS: lipopolysaccharide; MAGEL2: Melanoma Antigen Gene

Family Member L2; MIA: maternal immune activation; methyl-CpG binding protein 2 (MECP2), NLGN: neuroligin;

rep: repetitive behavior; poly I:C: polyriboinosinic: polyribocytidylic acid; OPRM1: μ opioid receptor; soc: social

problems; TSC: tuberous sclerosis complex; TSHZ3: a zinc-finger transcription factor; VPA: valproate .

2.3. Oxytocin Treatment

As VP might bind to OTRs (see earlier), it is important to note that several animal trials of OT treatment suggested

beneficial effects. In children, even a single intranasal OT administration increased the nonverbal information-

based judgments . Despite mixed results, a recent meta-analysis found moderate evidence that a 6-week OT

treatment might improve the reduced interest and repetitive behavior of ASD children and the effect lasted for at

least 6 months .

2.4. Contradiction

There is an apparent contradiction between the effectiveness of VP as well as its antagonist. A possible

explanation can be the age of the participants as well as the method used for drug administration (i.n. for children,

other peripheral routes for adults), thereby targeting central or peripheral receptors. Moreover, although VP may

stimulate all receptors including OTRs, its effectiveness can be different on them, while antagonists are highly

selective, which might shift balance between the VP receptor actions.

References

Model Major Problems ReferencesType Name/Implicated Molecule

Rett syndrome MECP2 soc., com.

Tuberous sclerosis TSC1, TSC2
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GAP43 soc., resistance to change
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Environmental
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MIA soc.
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