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Microfluidic lab-on-a-chip cell culture techniques have been gaining popularity by offering the possibility of reducing

the amount of samples and reagents with greater control over the cellular microenvironment. Polydimethylsiloxane

(PDMS) is the commonly used polymer for microfluidic cell culture devices because of the cheap and easy

fabrication techniques, non-toxicity, biocompatibility, high gas permeability, and optical transparency.

PDMS,microfluidics,endothelial cells,surface treatment,hydrophobicity

1. Introduction 

Microfluidic technology, also known as lab-on-a-chip or micro total analysis system (μTAS), was applied in cell

biology more than 20 years ago. Microfluidic techniques are powerful tools in cell culture because of its ability to

create complex and controllable cellular microenvironment in microchannels . This technology can provide a

complex cell-based bioassay platform by integrating several steps such as fluid control, cell culture, cell capture,

cell-cell, and cell-matrix interaction, cell lysis, cell signaling, and detection of biochemicals in a single device .

Successful cell culture in microfluidic devices depends on the characteristics of the substrate materials. A broad

range of polymers, such as polycarbonate , polystyrene , polymethyl-methacrylate , cyclic olefin polymers 

, and polydimethylsiloxane (PDMS)  have been used for fabricating microfluidic cell culture devices.

Among them, PDMS has been gaining popularity because of the relatively low-cost and easy fabrication

procedures as well as good mechanical stability .

PDMS is a silicon-based synthetic polymer, consisting of the repeating unit of Si-O molecules with two organic

methyl groups attached to silicon. PDMS possess distinctive properties, including low elasticity, low thermal

conductivity, high electrical resistance, chemical inertness, non-toxicity, non-flammability, and porosity . Some

intrinsic properties, such as biocompatibility, optical transparency, and gas permeability can explain the

acceptability of PDMS widely in microfluidic devices for bioassay and real-time imaging . PDMS elastomer is

transparent in the optical spectrum with wavelengths from 240 nm to 1100 nm . The refraction index of PDMS is

1.4, making it compatible with various optical imaging methods . Bright-field imaging technique can precisely

track, and image small molecules or a single cell in the microfluidic device even at high frame rates . On the

other hand, the highly porous structure of PDMS allows for exchanging essential gasses (O  and CO ) in a

controlled manner for both short- and long-term cell cultures .
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The main drawback of PDMS microfluidic devices in cell biology is the intrinsic high surface hydrophobicity. Due to

its hydrophobic nature, the PDMS surface possesses poor wettability with the aqueous solvent . However, most

of the biological experiments performed in microchannels need an aqueous solution or a mixture of organic and

aqueous solutions . Cellular attachment is strongly influenced by the physicochemical properties of PDMS,

while the attachment might vary depending on the cell types . Moreover, hydrophobicity might lead to the

absorption/adsorption of non-specific small molecules and biomolecules present in the cell media or secrete from

the cells on the PDMS surface . Cell signaling and behavior might be highly affected because of the depletion of

biomolecules and secreted soluble factors . To overcome this limitation, several surface modification methods

are developed to increase the hydrophilicity by improving the wettability of the PDMS surface for facilitating cellular

adhesion and proliferation in microfluidic devices.

2. Fabrication of PDMS-Based Microfluidic Chips

Various methods have been developed and employed for the fabrication of PDMS microfluidic devices, such as

soft lithography, inkjet printing , and direct writing . Among these, soft lithography is a commonly used

technique in PDMS chip fabrication for cell culture . Soft lithography provides a simple, but robust fabrication

of microchannel with various patterns and high optical transparency .

Soft lithography involves a group of patterning methods, such as imprinting, casting, and embossing with the

elastomeric master mould or stamp . PDMS exhibits a relatively low glass transition temperature and liquid at

room temperature that makes it suitable to fabricate a replica from the master mould . The two major steps in

soft lithography are photolithography and replica moulding. Photolithography is used to generate the master mould.

A photosensitive emulsion called a photoresist is deposited on a silicon wafer and exposed to UV light through a

photomask. To dissolve the unexposed regions, a developing reagent is used, and then finally releases the bas-

relief structure of the master mould for PDMS fabrication . A silicon master mould can be used several times for

replica moulding. Replica moulding can be performed at ambient temperature. In general, liquid PDMS prepolymer

is mixed with a curing agent at a ratio of 10:1 (base: curing agent). This ratio provides the optimum mechanical

properties and biocompatibility for cell culture . Mixing of PDMS prepolymer with the curing agent activates

the polymer chains and transforms the liquid materials into the solid elastomer. The time of PDMS curing normally

depends on the temperature. PDMS can be cured within an hour at 75 °C while it can take 24 h at room

temperature. After curing, the PDMS device is peeled off from the master mould and small inlet and outlet holes

are punched. At the final stage, the PDMS device is generally sealed to itself or another flat surface both reversibly,

or irreversibly . After bonding, the device is cured for 10 min at 75 °C and becomes ready to use. Figure 1 shows

the step-by-step fabrication procedure of a PDMS device by replica moulding.
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Figure 1. Illustration of the step-by-step fabrication process of a PDMS chip by replica moulding: (1) Generating

silicon master mould using photolithography; (2) Pouring of the mixture of PDMS prepolymer and curing agent into

the master mould and allowing it to solidify; (3) Peeling of the solidified PDMS from the master mould and cutting it

into an appropriate shape; (4) Punching the inlet and outlet holes; (5) Activating the PDMS and glass surface by

plasma treatment for facilitating the bonding; (6) Binding and curing of PDMS chip bonded on glass ready to use.

However, the common problem associated with the soft lithography technique is the deformation of patterns during

demoulding . This mould based technique requires an expensive photolithography technique to design the

master mould that increases the production cost . However, this technique does not require any clean-room

environment during chip fabrication, the photolithographic master mould preparation needs to be done inside the

clean-room environment . Moreover, trained personnel and a well-equipped lab are required to perform this

multi-step fabrication procedure.

3. Surface Treatment for Endothelial Cells (ECs) Culture in
PDMS Microfluidic Devices

The hydrophobicity of PDMS is associated with the organic methyl groups present in the chemical structure of

PDMS. Hydrophobicity of PDMS leads to poor wettability and limits the cell adhesion on the PDMS surface.

Wettability is defined as the ability of the liquid to maintain contact with a solid surface and quantified by measuring

the water contact angle (WCA). A surface with a WCA smaller than 90 °C is referred to as a hydrophilic surface,

while WCA greater than this corresponds to a hydrophobic surface . The WCA of PDMS is approximately 108 °C

± 7 °C , which makes the cell adhesion difficult on the PDMS surface. Surface modification treatment is required

to increase the hydrophilicity of the PDMS surface for optimal ECs adhesion. The most commonly used PDMS

surface modification method is plasma treatment because the process is relatively simple and short .
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Oxygen, nitrogen, argon, hydrogen bromide, and chlorine gasses are mainly used in plasma treatment . Among

all, oxygen plasma treatment shows the most rapid increase of the hydrophilicity of the PDMS surface by removing

hydrocarbon groups and introducing polar silanol (SiOH) groups via oxidization . On the other hand, PDMS

coating with extracellular matrix (ECM) proteins such as collagen, gelatin, and/or fibronectin alter the surface

roughness and provide a natural moiety for cell anchoring and survival . Besides, chemical treatment of PDMS

surface has been introduced because of ECM protein degradation, as well as instability under shear stress .

Chemically modified PDMS surface provides a strong and stable covalent linkage to cell adhesion moieties.

Furthermore, the combination of different modification techniques shows better wettability and cell adhesions. This

section discusses different surface modification techniques for ECs adhesion, and provides a summary of the

recent studies (Table 1), with major pros and cons of different treatments.

Table 1. Summary of the extensively used PDMS surface modification treatment for improving cell adhesion.
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Method
Hydrophilicity

of PDMS

Type of Cell

Used

Adhesion of

Cells

Flow

Conditions
Pros Cons References

Plasma treatment

Increases as

WCA

decreases by

approximately

30°

Human

primary

pulmonary

arterial

endothelial

cells

100%

confluency

was

achieved

after 3 days

on plasma-

treated

PDMS

surface

Confluency

was

equivalent in

both static

and flow

condition

Relatively

inexpensive

Easy to

perform.

Time-

efficient.

The

hydrophilicity

of the

oxygen

plasma-

treated

PDMS

surface is

temporary

and gradual

hydrophobic

recovery is

shown over

time. It is not

suitable for

long term

cell

adhesion.

Coating with ECM

protein-Collagen

Type I

Collagen

increases the

Human

umbilical vein

endothelial

Both cell

lines were

able to

Stable under

static

conditions

Good

adsorption of

collagen

Cell

detachment

occurs after
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hydrophilicity

to the greatest

extent among

extracellular

matrix

(ECM)proteins

cells

(HUVECs)

attach and

proliferate

after initial

seeding

for a few

days

onto PDMS

among ECM

proteins

Good

modulation

of ECs

morphology

Increases

the

hydrophilicity

of PDMS to

one of the

greatest

extents

amongst

reagents

Exhibits

good

adhesion of

ECs

a few days

due to the

formation of

cell clusters

Type IV

Collagen is a

poor reagent

for seeding

EC Might not

be stable

under high

flow rates as

ECs begin to

detach at

flow rates

above 10

μL/min

Endothelial

cells derived

from Human

induced

pluripotent

stem cells

(iPSC-ECs)

More cell

activity than

HUVEC

under flow

conditions of

10 μL/min

Human

dermal

microvascular

endothelial

cells

Confluent

layer formed

Not

specified

HUVECs

Good

adhesion as

confluency

achieved

after an hour

Cells were

stable at

flow rates of

5–10 μL/min

Coating with ECM

protein-Gelatin

Increases the

hydrophilicity

by increasing

the surface

roughness

Sheep

Carotid

Arterial

endothelial

cells

Poor

adhesion of

endothelial

cells (ECs)

as compared

to other ECM

proteins

Cells were

adherent

when

exposed to

the shear

stress of 1

dyne/cm

Able to

maintain the

activity of

cells for the

longest

duration

Cell

aggregation

A high

tendency for

cells to

dissociate

from PDMS

HUVECs,
Good

adhesion

Coating with ECM

protein-Fibronectin

Hydrophilicity

increases

Sheep

Carotid

Good

adhesion

Adhesion

lasts for a

Second

among the

Fibronectin

is an ECM
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significantly Arterial ECs few days

without

exposure to

flow.

ECM

proteins in

seeding ECs

The highest

rate of

reagent

adsorption

onto PDMS

protein that

can lead to

cell

dissociation

HeLa ECs

Better than

gelatin in

terms of

adhesion

Human aortic

ECs

Unable to

reach

confluency

HUVECs

The same

extent of

adhesion as

oxygen-

fibronectin

Stable to

flow rates at

7.5 mL/min

Bovine Aortic

ECs

The same

extent of

adhesion as

oxygen-

fibronectin

95%

detachment

after 2

weeks under

static flow

Coating with

biopolymer-Laminin

Increases but

not as much

as ECM

protein.

HUVECs

Poor

adhesion of

ECs as

compared to

ECM protein.

Stable

underflow at

5 dyne/cm

Good

adhesion

Spreading of

cells over the

laminin-

modified

surface is

slow. Might

change the

cell

morphology.

Chemical treatment-

APTES ((3-

Increases as

WCA

decreases by

HUVECs Cells

proliferated

with the

Good

stability and

adhesion

Chemical

treatment is

not prone to

Weaker

increase in

hydrophilicity
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aminopropyl)

triethoxysilane)

approximately

70°

increase in

incubation

time

under shear

stress (0.5

mm/s)

degradation

Forms

amine

groups,

which is

suitable for

HUVECs

adhesion

as compared

to ECM

proteins

Vascular ECs

Cell

adhesion

observed

Chemical Treatment-

PDA (Polydopamine)

Increases as

WCA

decreases by

50%

Vascular ECs

Human

cerebral

microvascular

ECs

Improved

adhesion

and

proliferation

for both cell

lines

Poorer

response

when

exposed to

flow

compared to

fibronectin

Significant

increase in

hydrophilicity

Non-toxic to

cells Long

term stability

for cell

culture

Effect of

PDA on cells

is poorly

understood

Seldom used

in ECs

seeding

Chemical Treatment-

PEG (Poly (ethylene

glycol))

Increases as

WCA

decreases by

approximately

57°

HUVECs

Adhesion

was similar

to non-

modified

PDMS.

Poor cell

adhesion

underflow

Stable for

long term

culture when

used to

encapsulate

cells

Poor

adhesion

when used

as a coating

reagent

(iPSC-ECs)

When

encapsulated

with PEG,

cells were

stable for at

least 2

weeks

Chemical treatment-

Silica-Titanium

Increases but

less than ECM

proteins

HUVECs Good

adhesion of

cells

Not

specified

Does not

degrade

easily as

ECM

proteins

Certain

combinations

of silica-

titanium

could
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4. Conclusions and Perspective

PDMS is the most widely used polymer for the fabrication of microfluidic cell culture devices. The material catches

the interest of biomedical researchers because of its chemical inertness and biocompatibility. Easy and low-cost

fabrication methods also enhance the use of PDMS in lab-on-a-chip technology. The successful operation of

PDMS microfluidic lab-on-a-chip mostly depends on the cell growth and proliferation in the chip. However, the

intrinsic hydrophobicity of PDMS can disrupt the optimal cellular adhesion inside the device. Cell adhesion and

proliferation might depend on the ratio of the PDMS prepolymer and curing agents and cell types.
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present a

hostile

environment

for cells

Combination

treatment-Oxygen

Plasma + Fibronectin

Increases as

WCA

decreases by

approximately

80°

HUAECs

The same

extent of

adhesion as

fibronectin

Confluency

reached

Stable

adhesion at

a

physiological

flow rate

(0.5 mm/s)

Increases

the

hydrophilicity

of PDMS to

a huge

extent

Cell

dissociation

in long term

cell culture

Combination

treatment-PEG +

RGDS (Arg–Gly–

Asp–Ser) peptides

Increases HUVECs

87% of cells

coverage

observed

Stable at low

flow rates of

0.3 µL/min

Good

adhesion of

cells Cells

increase

with

increasing

RGDS

density

The

combination

is not

commonly

used as

ECM

proteins

Combination

Treatment-TEOS

(tetraethylorthosilane)

+ Fibronectin

Increases

Primary

Pulmonary

Artery ECs

Adhesion of

cells was

achieved

Stable under

low flow

rates of 0.1

mL/h

Good

adhesion of

cells

The

detachment

of cells might

occur at high

flow rates
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Different types of surface modification treatments are performed to increase the hydrophilicity by improving the

wettability of the PDMS surface for successful endothelial cells (ECs) attachment. Plasma treatment is the most

commonly used modification method for PDMS, but the rapid hydrophobic recovery of the surface limits long-term

cell attachment. Coating with different extracellular matrix (ECM) proteins deliberates an easy modification

platform, while the increase of wettability varies among different proteins. Moreover, easy dissociation of coating

protein underflow is commonly observed. The chemical treatment gives a strong binding affinity to cells with PDMS

surface. However, using a chemical could be harsh to cells and cytotoxicity must be checked carefully before use.

Surface treated with charged molecules can bind with ECs by electrostatic interaction and can improve the

adhesion propensity to some extent. Physical modification of PDMS surface, such as altering surface roughness

can improve the cellular adhesion, but this method is only suitable for short-term cell culture.

As one treatment method has some advantages and disadvantages over other methods, it is important to combine

different methods together to maximise cell adhesion. However, one set of modifications is not effective for all

types of cell lines. Therefore, careful selection of methods and reagents are important for durable and

cytocompatible PDMS modification for longer cell culture in dynamic conditions. On the other hand, PDMS

elastomer with different topographies modification could directly use in chip fabrication. This might help to omit the

surface treatment complexity in a micrometer scale and ease cell seeding inside the chips. Although a PDMS chip

for cell culture is still a new area, continuous research for material and method selection, as well as designing new

materials for achieving required PDMS properties is indispensable.
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