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Microfluidic lab-on-a-chip cell culture techniques have been gaining popularity by offering the possibility of reducing
the amount of samples and reagents with greater control over the cellular microenvironment. Polydimethylsiloxane
(PDMS) is the commonly used polymer for microfluidic cell culture devices because of the cheap and easy

fabrication techniques, non-toxicity, biocompatibility, high gas permeability, and optical transparency.
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| 1. Introduction

Microfluidic technology, also known as lab-on-a-chip or micro total analysis system (UTAS), was applied in cell
biology more than 20 years ago. Microfluidic techniques are powerful tools in cell culture because of its ability to
create complex and controllable cellular microenvironment in microchannels . This technology can provide a
complex cell-based bioassay platform by integrating several steps such as fluid control, cell culture, cell capture,
cell-cell, and cell-matrix interaction, cell lysis, cell signaling, and detection of biochemicals in a single device (2],
Successful cell culture in microfluidic devices depends on the characteristics of the substrate materials. A broad
range of polymers, such as polycarbonate 3, polystyrene !, polymethyl-methacrylate B cyclic olefin polymers @
8 and polydimethylsiloxane (PDMS) RILIILLL2]13] haye been used for fabricating microfluidic cell culture devices.
Among them, PDMS has been gaining popularity because of the relatively low-cost and easy fabrication

procedures as well as good mechanical stability 141,

PDMS is a silicon-based synthetic polymer, consisting of the repeating unit of Si-O molecules with two organic
methyl groups attached to silicon. PDMS possess distinctive properties, including low elasticity, low thermal
conductivity, high electrical resistance, chemical inertness, non-toxicity, non-flammability, and porosity 12, Some
intrinsic properties, such as biocompatibility, optical transparency, and gas permeability can explain the
acceptability of PDMS widely in microfluidic devices for bioassay and real-time imaging 23, PDMS elastomer is
transparent in the optical spectrum with wavelengths from 240 nm to 1100 nm 22!, The refraction index of PDMS is
1.4, making it compatible with various optical imaging methods X3, Bright-field imaging technique can precisely
track, and image small molecules or a single cell in the microfluidic device even at high frame rates 1€, On the
other hand, the highly porous structure of PDMS allows for exchanging essential gasses (O, and CO,) in a

controlled manner for both short- and long-term cell cultures 131,
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The main drawback of PDMS microfluidic devices in cell biology is the intrinsic high surface hydrophobicity. Due to
its hydrophobic nature, the PDMS surface possesses poor wettability with the aqueous solvent 271, However, most
of the biological experiments performed in microchannels need an aqueous solution or a mixture of organic and
aqueous solutions 2211811191 Cellular attachment is strongly influenced by the physicochemical properties of PDMS,
while the attachment might vary depending on the cell types 29, Moreover, hydrophobicity might lead to the
absorption/adsorption of non-specific small molecules and biomolecules present in the cell media or secrete from
the cells on the PDMS surface [21, Cell signaling and behavior might be highly affected because of the depletion of
biomolecules and secreted soluble factors 23, To overcome this limitation, several surface modification methods
are developed to increase the hydrophilicity by improving the wettability of the PDMS surface for facilitating cellular

adhesion and proliferation in microfluidic devices.

| 2. Fabrication of PDMS-Based Microfluidic Chips

Various methods have been developed and employed for the fabrication of PDMS microfluidic devices, such as
soft lithography, inkjet printing 22, and direct writing 22, Among these, soft lithography is a commonly used
technique in PDMS chip fabrication for cell culture 23I151, Soft lithography provides a simple, but robust fabrication

of microchannel with various patterns and high optical transparency 241,

Soft lithography involves a group of patterning methods, such as imprinting, casting, and embossing with the
elastomeric master mould or stamp 22, PDMS exhibits a relatively low glass transition temperature and liquid at
room temperature that makes it suitable to fabricate a replica from the master mould 13171 The two major steps in
soft lithography are photolithography and replica moulding. Photolithography is used to generate the master mould.
A photosensitive emulsion called a photoresist is deposited on a silicon wafer and exposed to UV light through a
photomask. To dissolve the unexposed regions, a developing reagent is used, and then finally releases the bas-
relief structure of the master mould for PDMS fabrication 7. A silicon master mould can be used several times for
replica moulding. Replica moulding can be performed at ambient temperature. In general, liquid PDMS prepolymer
is mixed with a curing agent at a ratio of 10:1 (base: curing agent). This ratio provides the optimum mechanical
properties and biocompatibility for cell culture 22681 Mixing of PDMS prepolymer with the curing agent activates
the polymer chains and transforms the liquid materials into the solid elastomer. The time of PDMS curing normally
depends on the temperature. PDMS can be cured within an hour at 75 °C while it can take 24 h at room
temperature. After curing, the PDMS device is peeled off from the master mould and small inlet and outlet holes
are punched. At the final stage, the PDMS device is generally sealed to itself or another flat surface both reversibly,
or irreversibly (27, After bonding, the device is cured for 10 min at 75 °C and becomes ready to use. Figure 1 shows

the step-by-step fabrication procedure of a PDMS device by replica moulding.
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Figure 1. lllustration of the step-by-step fabrication process of a PDMS chip by replica moulding: (1) Generating
silicon master mould using photolithography; (2) Pouring of the mixture of PDMS prepolymer and curing agent into
the master mould and allowing it to solidify; (3) Peeling of the solidified PDMS from the master mould and cutting it
into an appropriate shape; (4) Punching the inlet and outlet holes; (5) Activating the PDMS and glass surface by

plasma treatment for facilitating the bonding; (6) Binding and curing of PDMS chip bonded on glass ready to use.

However, the common problem associated with the soft lithography technique is the deformation of patterns during
demoulding 24, This mould based technique requires an expensive photolithography technique to design the
master mould that increases the production cost 28 However, this technique does not require any clean-room
environment during chip fabrication, the photolithographic master mould preparation needs to be done inside the
clean-room environment 22, Moreover, trained personnel and a well-equipped lab are required to perform this

multi-step fabrication procedure.

3. Surface Treatment for Endothelial Cells (ECs) Culture in
PDMS Microfluidic Devices

The hydrophobicity of PDMS is associated with the organic methyl groups present in the chemical structure of
PDMS. Hydrophobicity of PDMS leads to poor wettability and limits the cell adhesion on the PDMS surface.
Wettability is defined as the ability of the liquid to maintain contact with a solid surface and quantified by measuring
the water contact angle (WCA). A surface with a WCA smaller than 90 °C is referred to as a hydrophilic surface,
while WCA greater than this corresponds to a hydrophobic surface B, The WCA of PDMS is approximately 108 °C
+ 7 °C Bl which makes the cell adhesion difficult on the PDMS surface. Surface modification treatment is required
to increase the hydrophilicity of the PDMS surface for optimal ECs adhesion. The most commonly used PDMS

surface modification method is plasma treatment because the process is relatively simple and short [32I33134]
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Oxygen, nitrogen, argon, hydrogen bromide, and chlorine gasses are mainly used in plasma treatment (8. Among
all, oxygen plasma treatment shows the most rapid increase of the hydrophilicity of the PDMS surface by removing
hydrocarbon groups and introducing polar silanol (SiOH) groups via oxidization 2833, On the other hand, PDMS
coating with extracellular matrix (ECM) proteins such as collagen, gelatin, and/or fibronectin alter the surface
roughness and provide a natural moiety for cell anchoring and survival 28, Besides, chemical treatment of PDMS
surface has been introduced because of ECM protein degradation, as well as instability under shear stress 7.
Chemically modified PDMS surface provides a strong and stable covalent linkage to cell adhesion moieties.
Furthermore, the combination of different modification techniques shows better wettability and cell adhesions. This
section discusses different surface modification techniques for ECs adhesion, and provides a summary of the

recent studies (Table 1), with major pros and cons of different treatments.

Table 1. Summary of the extensively used PDMS surface modification treatment for improving cell adhesion.

Hydrophilicity = Type of Cell Adhesion of Flow
Method o Pros Cons References
of PDMS Used Cells Conditions
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of the
oxygen
plasma-
100%
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primary ) was inexpensive surface is
WCA | achieved alenti e .
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Plasma treatment decreases by ) after 3 days ) [38][39]1401
) arterial both static perform. and gradual
approximately ) on plasma- ) )
endothelial and flow Time- hydrophobic
30° treated . o )
cells condition efficient. recovery is
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[45][46][47][48]
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