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PARP inhibitors were introduced as tools to protect from inflammatory diseases. Later, these selective inhibitors

were evaluated as nanotherapeutic agents in clinical trials as targeted treatment strategies against solid tumors

derived from ovarian, prostate, breast, colorectal, and uterine tissues. Although previous reports have established

that PARP inhibitors effectively treat BRCA1-deficient cancers and increase patients’ progression-free survival

(PFS), new studies have suggested that HR-deficient cells may also be vulnerable to PARP inhibition.
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1. Introduction

Over the past few years, there have been tremendous efforts to develop novel new carriers for various cancer

treatments . The advent of nanotechnology and machine learning have helped to design novel

alternative targeting strategies to circumvent MDR . As an innovative field with immense potential,

nanomedicine allowed biocompatible materials to be developed for various theranostic applications .

Having ushered in multiple established drug delivery platforms, nanostructures such as niosomes , liposomes

, nanomicelles , polymeric micelles , and nanoparticles (NPs)  were broadly used in clinics to

enhance the efficacy of anticancer agents for single and combinatorial treatments. Due to their specific design,

structural variety, pH-sensitivity, excellent stability, biocompatibility, high drug loading, and simple elaboration, these

nano-sized materials have attracted much attention as a new reversal MDR tool in cancer therapy .

Small-molecule inhibitors have revolutionized the treatment of cancer , and autoimmune , infectious , and

metabolic  diseases. These selective inhibitors can effectively target a wide range of signaling pathways in

cancerous cells, such as protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) , mitogen-

activated protein kinase (MAPK) pathway , vascular endothelial growth factor (VEGF), epidermal growth factor

(EGF) and their receptors (VEGFR and EGFR) , hedgehog signaling pathway , the activator of

transcription-3 (Stat3) signaling pathway , phosphoinositide 3-kinase (PI3K)/Akt and the mammalian target of

Rapamycin signaling network , Wnt/beta-catenin signaling , transforming growth factor β (TGFB) signaling

, insulinlike growth factor I receptor signaling , and DNA repair pathways .

The targeting of DNA repair pathways is among the different strategies to combat MDR . In this context, the

Poly(ADP-ribose) polymerase (PARP) family members are known to engage in various biological and cellular
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processes, such as DNA repair, gene transcription, signaling cascades, regulation of the cell cycle, cell division,

and intracellular antioxidant response . PARP inhibitors account for one of the most remarkable novel

strategies for targeted therapy against cancer cells . These synthetic small-molecules act through synthetic

lethality in cancer cells having mutations in DNA repair genes . Some of the PARP inhibitors have already been

approved to treat cancers with germline mutations in the BRCA1 and BRCA2 genes . At the same time,

druggable genomic changes are varied and include a minority of patients with a specific cancer type, limiting the

examination of the efficacy of these inhibitors in clinical trials .

Drug resistance and unwanted side effects are two significant drawbacks to using PARP inhibitors for cancer

therapy . Therefore, new formulations containing these selective inhibitors were subsequently designed to

overcome MDR. Through this review, we hope to cast light on the most innovative progress made in applying

PARP inhibitors for therapeutic purposes.

2. PARP Inhibitors

There PARP family is comprised of 17 members out of which the primary nuclear PARPs are of Poly(ADP-ribose)

polymerase-1 (PARP-1), Poly(ADP-ribose) polymerase-2 (PARP-2) , Poly(ADP-ribose) polymerase-3 (PARP-3),

PARP-5a, PARP5b, and tankyrase 1 and 2 . The small-molecules including olaparib (AZD-2281, TOPARP-A),

veliparib (ABT-888), talazoparib (BMN-673), rucaparib (AG014699, PF-01367338, CO338), niraparib (MK4827),

BMN 763, AZD2461 (NCT01247168), E7016 (NCT01127178), INO-1001 (NCT00272415), EP9722

(NCT00920595) are potent submicromolar competitive nicotinamide adenine dinucleotide (NAD+) inhibitors of

PARP-1 and PARP-2 enzymes . Inhibition of PARP enzymes blocks PARylation reaction, through which ADP-

ribose residues transfer to target substrates via ADP-ribosyl transferase using NAD+ . It has been established

that PARP trapping is responsible for the anticancer potency of PARP inhibitors . Among all the PARP inhibitors

in clinical development, talazoparib is the most potent PARP inhibitor, whereas veliparib demonstrated the lowest

PARP trapping potency . With less inhibitory effect than against PARP-1 and PARP-2, olaparib and rucaparib

can also inhibit PARP-3 in BRCA-mutated advanced cancers .

Endogenous and exogenous DNA damaging agents cause cellular stresses that result in DNA damage . These

damages pose a threat to the genome and are routinely repaired by different mechanisms, such as base excision

repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), ataxia-telangiectasia mutated/ataxia-

telangiectasia, and Rad3-related (ATM/ATR)-mediated DNA damage response, nonhomologous end-joining repair

(NHEJ) and more importantly, homologous recombination (HR) pathways . On the other hand, PARP

enzymes contribute to these mechanisms by acting as proteins that share enzymatic and scaffolding activities and

have broad roles in overall DNA repair mechanisms .

PARP1 consists of three domains that are involved in auto-modification, PARylation (catalysis) and DNA-binding. In

case of single-strand break (SSB) or double-strand break (DSB) in DNA, PARP1 recruits to the damaged site and

forms branched poly (ADP-ribose) (PAR) chains. Other PARPs, including PARP2, PARP5a, and PARP5b, create

long branching PAR chains of up to 200 units in length . The formed chain would protect DNA from nuclease
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enzymes and facilitates the recruitment of DNA repair proteins involved in BER, HR, and NHEJ pathways .

Later, the poly (ADP-ribose) glycohydrolase (PARG) enzyme effectively hydrolyses poly ADP-ribose units .

PARP inhibitors entrap PARP enzymes and destabilize replication forks at the damaged site of DNA . This

results in inducing apoptotic cell death via replication-stress mitotic catastrophe, and therefore suppresses tumor

growth via suppressing the DNA damage repair pathway . In addition to PARP inhibitors, PARG inhibitors can

exacerbate replication deficiencies and be considered promising therapeutic modalities against cancer types with

genomic instability . 

NPs serve as a unique platform of drug delivery and therefore they have been extensively investigated for their

potential use in anticancer drug delivery. NPs can be fabricated in a variety of ways to increase the drug

encapsulation capacity at the inner core, and they can be also equipped with multiple functions on the outer core to

improve the drug activity in the target environment . Besides, they have the potential to deliver poorly water-

soluble drugs and provide a sustained releasing profile to prolong the blood circulation time. Thus, NPs offer far

superior pharmacokinetics compared to small molecule drugs . Many promising drugs fail to pass clinical trials

due to their short half-life and high toxicity in vivo. Besides, orally administered drugs undergo extensive

degradation in the liver resulting in decreased optimum concentration of the drugs before reaching the target site.

However, if the drugs could be loaded in specially designed NPs for delivery, the drugs would circulate for longer

times in the blood, enabling sustained interaction with the tumor and leading to increased tumor accumulation. NPs

also serve as a sheath that would shield the body from off-target toxicities of drugs, alter the cellular uptake of the

drugs and lessen the probability of the emergence of drug resistance. At present, many NPs are being studied in

clinical trials for a wide variety of medical treatments, and a few of them have been clinically approved for

chemotherapies . For example, conventional oral delivery of PARP inhibitors is hindered by limited bioavailability

and off-target toxicities . On the other hand, due to complementary activity of PARP inhibitors, the use of them

during radiotherapy (RT) has yielded promising results. Unfortunately, this approach is often hindered by toxicity

and poor in vivo stability of the PARP inhibitors . Additionally, the preclinical PARP inhibitors are limited by their

rapid washout kinetics and consequently modest pharmacological performances . In several cases, these could

be improved by loading the PARP into nanoparticulates, improving blood half-life, in vivo uptake and overall

pharmacodynamics . For instance, olaparib has advanced the treatment of ovarian cancer by providing

patients with an effective and molecularly targeted maintenance therapy. However, olaparib must undergo first-

pass metabolism. A nanoparticle delivery system has the advantage of administering olaparib directly into the

peritoneal cavity for local treatment .

3. Nanoformulations for Delivery of PARP Inhibitors to
Cancer Cells

Radiotherapy has been investigated for many years for the treatment of cancer. Recently, PARP inhibitors have

been used in combination with radiotherapy to enhance DNA damage in the tumor cells. Lipid formulation was

developed using olaparib (NanoOlaparib) to measure their efficacy in the prostate cancer cell lines. The activity of

the NanoOlaparib was investigated along with the focused beam of X-ray radiation in the Pten/Trp53-deficient
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mouse model. The therapy elevated the DNA damage in the radiation-resistant cells. After 13 weeks of therapy

with NanoOlaparib and radiation, the mice’s survival was prolonged. Additionally, the NanoOlaparib accumulated in

the cancer cells up to 19 folds. Altogether, NanoOlaparib was found to be the optimistic delivery vehicle for

improving the radiosensitivity in prostate cancer . Nanoformulation containing olaparib (NanoOlaparib) and the

nanoformulation with olaparib along with platinum conjugation (NnaoOlaparibPt) were formulated and the activity

was demonstrated against the ovarian cancer cell line. The nanoformulations improved the pharmacokinetic and

bioavailability profile. The cytotoxicity as studied on the ovarian cancer cell line revealed that nanoformulations

were able to suppress cell proliferation. NanoOlaparib improved the therapeutic activity by reducing tumor

proliferation. An elevated response was shown by using NanoOlaparib and NanoOlaparibPt on the MDR cell line

SKOV-3. Additionally, the use of olaparib and cisplatin in the nanoformulation was developed and found to

significantly affect cancer cell death .

Plectin is a protein that is mislocalized on the surface of ovarian cancer cells. Hence, it can be considered as a

therapeutic target for active drug delivery in cancer. A study demonstrated this idea by developing the plectin-

targeted peptide anchored to the NPs and loaded with an AZ7379 PARP inhibitor. The plectin-targeted peptide

conjugated liposomes significantly decreased cell proliferation in the mice bearing OVCAR8 (epithelial ovarian

cancer). The findings affirmed the advantage of nanotechnology and active targeting in improving cancer

therapeutics .

Nanomaterials comprised of polymers have high stability, biodegradation, and biocompatibility. The composition of

the NPs can modulate the drug release and enhance the targeting of the cancer cells.

Another novel molecule, fluorescent PARP inhibitor (PARPi-FL), a fluorescently labeled sensor of olaparib was

studied to target the cancer cells. Nanoformulation was developed, which encapsulated the PARPi-FL. The

encapsulation not only improved the delivery of the agent to the cancer cells but also helped in the imaging .

The nanoemulsion was stabilized with lipids and cholesterol. The nanoemulsion improved permeation followed by

subsequent uptake by the PARP1-expressing small cell lung cancer (SCLC). The PARPi-FL nanoemulsion was

tested in the xenograft mouse models of SCLC and exhibited good circulation. This nanoemulsion presented good

imaging and targeting possibilities .

4. Conclusions and Outlook

PARP inhibition has opened windows of opportunity to treat many diseases, specifically solid tumors. Yet, drug

resistance and unwanted side effects are two significant drawbacks to using them for therapeutic purposes. These

selective inhibitors have been widely explored by formulating nanomedicine to reduce off-site toxicity or drug

resistance. The NPs loaded with PARP inhibitors have shown significant improvement in cancer therapeutics. In

addition, PARP inhibitors can be explored as diagnostic therapy along with targeted delivery in cancers. There is

still a gap between the laboratory findings and clinical translation of these developed nanoformulations. Further

investigations on the tumor microenvironment and MDR mechanisms are needed to minimize or eliminate the
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limitations of using these inhibitors. An extensive effort needs to be put into exploring nanoformulations in terms of

their safety, non-specific accumulation, tissue targeting, and efficacy.
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