
Voxelisation Algorithms
Subjects: Computer Science, Interdisciplinary Applications

Contributor: Mitko Aleksandrov

Voxel-based data structures, algorithms, frameworks, and interfaces have been used in computer graphics and many

other applications for decades. There is a general necessity to seek adequate digital representations, such as voxels, that

would secure unified data structures, multi-resolution options, robust validation procedures and flexible algorithms for

different 3D tasks.

Keywords: voxel ; voxelisation ; algorithms ; geometric primitives

1. Introduction

Voxel-based representations are used in many application domains. In computer graphics, voxels are used for fast ray

tracing , voxelisation of surfaces and solids , shadow and visibility analysis . These are mostly focused on

fast-real time visualisation and therefore aiming at visualising only visible voxels. In medicine, voxel representations are

commonly implemented in software processing CT and MRI scans investigating organs and body structure in three

dimensions . Voxel approaches are increasingly being used in city modelling for 3D reconstruction and spatial

analysis . Voxel-based models are commonly investigated with the aim to define geological phenomena . In

environmental analysis, voxelisation is used to establish computational domains for gaseous and liquid simulations as well

as to interact with obstacles . Voxel-based methods are extensively applied for the processing of point clouds .

A quick voxelisation is suggested to derive navigable areas for pedestrian simulation and collision detection

. As we can see voxels are highly applicable in various domains due to their discrete representation creating a

continuous phenomenon in space.

A discrete approximation of digital objects or continuous phenomena is called voxelisation. Many different voxelisations

are performed targeting lines , triangles , polygons , surfaces and solids . When voxelising 3D objects

different properties can be considered such as connectivity, separation, coverage and tunnelling , as well as colours

preservation and anti-aliasing which are related to non-binary voxelisation. Based on our knowledge there is no

single paper that evaluates and presents the characteristics of available algorithms for the voxelisation of different

geometrical primitives.

To be able to work with voxels, the conversion from vector-based primitives such as points, lines, triangles, surfaces and

solids needs to be performed.

2. Voxelisation Properties

The literature provides many definitions of a voxel space. Here we will refer to a voxels space as to an integer space. A

grid point represents a cell commonly referred to as a voxel. Voxels can have multiple properties, which can be organised

differently with respect to the application. Binary voxelisation is a term to indicate that a voxel can have a property, which

can take only two values: 0 (empty) or 1 (filled).

2.1. Common Voxelisation Properties

The shape of a voxel is generally considered as a cube, although applications may use cuboid representations . The

neighbourhood properties of a voxel play an important role in all voxel-based algorithms. A voxel can have a maximum of

26 adjacent voxels, from which 6 share a face, 12 share an edge and 8 voxels share only a corner in 3D space (Figure
1). Based on this, the adjacency relation N between two voxels is defined. Face-sharing voxels have adjacency 6, face-

sharing and edge-sharing voxels have the adjacency of 18, and 26-adjacent voxels are those that share a face, edge or

corner.

[1] [2][3] [4] [5][6][7]

[8][9] [10]

[11] [12][13]

[14] [15][16][17]

[18][19][20] [21]

[22]

[23] [24] [25] [26] [2][3]

[27]

[28] [29]

[13]

Figure 1. The 26 neighbours of a voxel; six voxels sharing face (in red), 12 voxels sharing edge (in green) and 8 voxels

sharing a vertex (in blue).

In contrast to vector representations, voxelised objects are prone to several configurations such as holes, cavities and

penetration, which have to be taken care of during the voxelisation. The objects have to remain connected so that a

discrete unit represents correctly the analogous representation of the vector object. This implies that the voxelisation

algorithms should apply several topological constraints such as connectivity, separation, coverage and tunnelling .

Connectivity identifies a set of N-paths between every pair of voxels belonging to an object and measures the way voxels

are linked to each other. It gives a notion of ‘thin’ or ‘thick’ voxelisation. Strongly connected voxels, such as 8-connected

in 2D and 18 and 26-connected in 3D are very attractive since they result in tinner objects with shorter length or area, and

require less memory for their storage. In some cases, the connectivity of voxels might be insufficient to estimate the

quality of the voxelisation process and therefore the notion of separation needs to be investigated.

Separation is a set of N-path voxels that divides two sets of voxels. This notion is intended to present how the “empty

space” interacts with the voxelised object. The separation is exclusively a topological property, which does not reflect to

what extent the actual object is correctly represented. In 2D space, a 4-connecting voxelised object is always 8-separating

and vice-versa (Figure 2). Separation is one of the main aspects that is considered in simulations preventing fluids to go

through obstacles such as wall. In the case of 6-separating voxelisation (i.e., thin voxelisation) a fluid would be allowed to

go to voxels that only share a face with a voxel. In general, such a kind of voxelisation is sufficient since fluids cannot

travel to other voxels that share an edge or a corner with the central one. In favour of having 6-separating voxelisation is

the fact that it is cheaper to compute and often more required in computer graphic applications .

Figure 2. Connectivity and separation in 2D voxel set representing a circle. On the left, 4-connected voxelisation is

achieved, which is at the same time 8-separating. On the right, 8-connected, and thus, 4-separating voxelisation is

presented.

Coverage is a notion that aims to define formally the thickness of a voxelised line or surface. There are three major

variations of it: cover, supercover and partial cover (Figure 3). A set of voxels is called a cover if every point of an object is

in a voxel. Normally, 8-connectivity in 2D creates a cover. A set of voxels are called supercover if all voxels that ‘contain’ or

‘touch’ points of the object are included in the set. In general, it enlarges the object and may result in large overlapping

parts of neighbouring objects . A suvercover is also known as a conservative voxelisation [37,38], which is highly

desirable for applications such as collision detection, occlusion culling and visibility analysis. A partial cover is a subset of

cover, which allows for the maintenance of the tiniest voxelisation. Another approach solution can target a ‘well-voxelised’

approximation, which is tunnel-free and has a partial cover at the same time. To achieve such voxelisation, a method is

[27]

[30]

[23]

proposed where the Euclidian distance is minimal between centroids of voxels representing a cover and the continuous

object .

Figure 3. Representation of a cover (a), supercover (b), partial cover (c), and partial cover (d) well-voxelised curve in 2D.

Tunnelling is the notion to indicate the effect of penetration of two voxelised lines or surfaces. The 8-connected

voxelisation in 2D, and 18- and 26-connected in 3D are prone to tunnelling. Consequently, a 4-connected voxel path in 2D

and 6-connected in 3D are tunnel-free. In computer graphics, tunnelling may give the impression of having holes during

rendering . In applications performing analysis on voxelised objects, tunnelling might lead to difficulties in detecting

intersections and penetrations.

2.2. Binary and Non-Binary Voxelisation

A common voxelisation classification depending on the resulting output identifies two types of voxelisation: binary and

non-binary. Binary voxelisation is investigated by many researchers , but we need to explain the needs and

possibilities of using non-binary voxelisation.

The main advantages of using binary voxelisation over a non-binary one is memory requirements, where only a single bit

is needed to indicate a voxel’s status, and speed to create a voxelised object. Apart from a discrete representation of an

object that binary representation provides, many times storing additional information is needed, especially for objects that

come with textures, semantics and other properties. For example, we can store information related to surface normal and

material properties like colour, opacity, density, depth, etc. There are several classes of non-binary voxelisation targeting

anti-aliasing , multi values , and distance transform .

3. Voxelisation of Geometric Primitives

Many voxelisation approaches have been reported in the literature, for example: for lines , triangles , polygons ,

parametric surfaces , implicit surfaces , constructive solid geometry , and polyhedral objects , etc. Herein will

present the state-of-the-art methods for voxelisation of geometric primitives such as points, lines, triangles, surfaces and

solids.

3.1. Point Voxelisation

Voxelisation of a point or many points can be done in a very straightforward way considering a pivot point of grid space

and voxel size. An algorithm considering the integer values for centroids of voxels is presented in . Due to its simplicity

to calculate and the ability to run in parallel, a point voxelisation technique known as particle-in-cell (PIC) is used in

physical simulations to track the movement of densities and currents in voxel space .

3.2. Line Voxelisation

A 3D continuous line can be transformed into a discrete set of connected voxels, and used as a building block for

generating more complex 3D objects, ray traversal in voxel space , and voxelisation of more complex primitives like

triangles . In 3D, 6-connected and 26-connected line voxelisation techniques are usually discussed by researchers.

Since not all line are straight spline voxelisaion is explored as well.

3.2.1. 6-Connected Voxelisation Algorithms

A straightforward method of raymarching voxels in a uniform grid was proposed generating a 6-connected path, which is

nowadays known as the real line voxelisation (RLV) . The method traverses the intersections between a line and the

grid. If the line passes through the corner of the voxel grid, an arbitrary voxel candidate can be picked or supercover line

voxelisation (SLV) can be formed.

[27]

[23]

[3][31][32][33]

[29][34] [35][36][37][38] [39][40][41][42]

[23] [24] [25]

[34] [43] [44] [45]

[46]

[47]

[23]

[33]

[1]

Another algorithm producing 6-connected voxelisation is Xiaolin Wu’s line algorithm . This algorithm is commonly used

in modern computer graphics because it supports antialiasing while being fast compared to other available algorithms.

A method generating a 6-connected line, named tripod, is proposed suggesting a comparable performance in voxelisation

speed with the RLV algorithm . The method is tracking the projections of a line on the three main axes. However, it

requires the line of origin to lay at the centre of the voxel to avoid fractions in calculations, which might not achieve the

containment of the original line (Figure 4c).

Following the same structure as RLV, a new approach is presented called integer-only line voxelisation (ILV) [41]. The

main idea of this method is to avoid floating-point arithmetic and divisions present in RLV. Apart from the shift of the

starting point of a line as in the tripod algorithm, this algorithm shifts the endpoint to the voxel centre as well (Figure 4d).

Figure 4. (a) RLV or SLV; (b) SLV generates more voxels than RLV considering all touching voxels; (c,d) small variations

of the voxels coverage generated by Tripod and ILV algorithm.

3.2.2. 26-Connected Voxelisation Algorithms

Many algorithms create thin line voxelisation. Regarding 8-connected rasterisation, the most famous algorithms are digital

differential analyser (DDA) (https://en.wikipedia.org/wiki/Digital_differential_analyzer_(graphics_algorithm). (accessed on

30 December 2021)) and Bresenham’s line algorithm . The main difference between these two algorithms is that

Bresenham’s line algorithm employs integer with round off functions while the DDA algorithm works with floating-point

values. Another pro of using Bresenham’s algorithm is the computational performance mainly due to using additions and

subtractions compared to the DDA which uses multiplications and additions. Unlike the DDA algorithm, the Bresenham

algorithm is an integer-only line voxelisation algorithm, requiring endpoints to lie exactly on the middle points of the grid.

However, we should point out that this shift can result in the coverage of different voxels between these two algorithms. A

3D version of DDA and Bresenham’s algorithm are also proposed creating a 26-connected line, behaving in the

same way as the initial algorithms.

3.2.3. Spline Voxelisation Algorithms

To tackle a variety of lines, including parametric ones, Laine introduced two approaches considering intersections

between specific targets and the grid . Targets that are suggested are diagonal and crosshair ones. The targets can be

applied in 2D and 3D voxelisations. Using one of these intersecting targets results in a voxelisation with different

connectivity and separability properties. Generally, a diagonal target leads to 4-connectivity and a crosshair target to 8-

connectivity voxelisation in 2D (Figure 5). The process is performed for each voxel which can be optimised by casting

rays diagonally and horizontally from two directions for both scenarios in 2D or by intersecting planes in the same way for

3D. Another possible solution that we can think of is to approximate such a line with straight lines and use some of the

previously mentioned algorithms to voxelise them.

Figure 5. Voxelisation of a curve using intersecting targets in 2D. (a) Using cross-diagonal intersection targets forming 4-

connected and 8-separating voxelisation. (b) Using crosshairs intersection targets forming 8-connected and 4-separating

voxelisation.

[48]

[23]

[49]

[50] [51]

[52]

3.2.4. Comparison of Line Voxelisation Algorithms

When it comes to speed, integer-based algorithms achieving thinner voxelisation should be the quickest. However, this

can depend on the application in which they are used. Thus, targeting optimal scanline voxelisation of 3D models RLV

outperformed the 3D Bresenham’s line algorithm and ILV in terms of speed and accuracy of approximating original 3D

models . It is pointed out that the main reason for this is the consideration of many edge cases, in which case other

algorithms were slower. Tripod and 3D-DDA were not considered here.

Table 1. Line voxelisation algorithms.

Method Type Property General Purpose

2D Bresenham’s line algorithm Integer-only 8-connected Line primitives rasterisation

2D-DDA Floating-point or integer 8-connected Line primitives rasterisation

3D-DDA Floating-point or integer 26-connected Line primitives voxelisation

RLV & SLV Floating-point Conservative Line primitives voxelisation

Xiaolin Wu’s line algorithm Floating-point Conservative Antialiasing

Tripod Integer 6-connected Line primitives voxelisation

3D Bresenham’s line algorithm Integer-only 26-connected Line primitives voxelisation

Targets-based approaches Floating-point 6/26-connected Irregular line primitives voxelisation

ILV Integer-only 6-connected Surface voxelisation

3.3. Triangle Voxelisation

Triangles are the most basic polygons which have some unique properties such as being planar, having a well-defined

interior and can perform quick intersections with rays. Triangles are almost always used as a building element of more

complex objects like polygons and surfaces. In general, rasterisation is the main technique used for voxelisation of

triangles, but raycasting techniques can be used as well (Figure 6).

Figure 6. Triangle voxelisation. (a) uniform ray casting (b) rasterisation techniques; in red, the bounding box, in green tiles

that are outside; in purple tiles that are inside; in yellow tiles that are intersecting the triangle are presented.

3.3.1. Rasterisation

Rasterisation approaches mainly rely on bringing triangles into 2D space to identify quickly which pixels should be filled

using inside/outside checks. To optimise which pixels to check, as presented in Figure 6b, the simplest approach is to

consider only pixels that are covered by the bounding box of a triangle . However, for elongated triangles, many pixels

that are outside still need testing, which can be considered as wasted computation. As a result, an approach tessellating a

bounding box space into tiles is proposed (Figure 6b), which can quickly eliminate large blocks of pixels that are outside

but also inside of a triangle . At the same time, many rasterisation approaches target various pixel traversal ways to

quickly identify which to fill. Thus, algorithms considering backtrack traversal , zigzag traversal , central-line traversal

, tiled traversal and midpoint traversal are available. Tiled traversal algorithms are considered the best

out of them. However, this might not be the case if triangles are smaller compared to a selected pixel size , requiring to

split them into groups for faster processing .

It is suggested that DDA and Bresenham algorithms can be used for triangle rasterisation, but they can be difficult to

implement in hardware resulting in a few approaches relying on them for triangle voxelisation . However, researchers

[53]

[49]

[50]

[1]

[48]

[23]

[51]

[52]

[33]

[54]

[55]

[56] [57]

[54][58] [59][60][61] [62]

[63]

[26]

[62]

are trying to come up with approaches that actually involve line rasterisation , achieving compareble preformance

with above mentioned approaches.

3.3.2. Raycasting

Several algorithms are targeting ray-triangle intersections to derive which triangles to render on a screen . Ray

casting can be performed from a specific point of view using a perspective camera or an orthogonal camera, where rays

are uniformly sent towards an area of interest. However, voxels do not cover the same area in the scene if a perspective

camera is used. On the other hand, if all intersections with triangles are identified using an orthogonal camera, the whole

scene can be voxelised at once with the same size voxels. In order not to miss thin structures, raycasting can be

performed in all three directions or diagonally. To reduce the intersection checks between triangles and rays an algorithm

is proposed which checks first if bounding boxes of triangles are inside the view frustum .

Similar techniques are used for the efficient calculation of ray-polygon intersections. For convex polygons dividing them

into triangles and performing inside-outside check is suggested , while for non-convex and self-intersecting polygons

odd/even parity can be used for a ray-polygon intersection . Another set of algorithms achieving 6-connected and 26-

connected voxelisation are presented , which are based on the previously mentioned targets intersections.

3.3.3. Comparison of Triangle Voxelisation Algorithms

Rasterisation techniques are predominantly used for voxelisation of triangles (Table 2). Although ray casting techniques

are slower than rasterisation ones, they can be used at the same time to obtain shadows and reflections more accurately

for computer graphics applications. Raycasting techniques can achieve 6- and 26-connected voxelisation, while

conservative voxelisation can be only achieved with rasterisation techniques.

Table 2. Triangle voxelisation algorithms.

Method Type Property Main Technique

Rasterisation 6/26-connected &
conservative

Bounding box, backtrack, zigzag, central-line, and midpoint
traversal

Rasterisation 6/26-connected &
conservative Tile-based

Raycasting 6/26-connected Ray-triangle and ray-polygon intersection

Rasterisation 6/26-connected &
conservative Line rasterisation

3.4. Surface Voxelisation

A surface usually represents a continuous object resembling a deformed plane. To achieve a surface voxelisation there

are two main approaches. The first approach is based on slicing of a scene or an object from one or more viewing

directions. The second one considers rasterisation of triangles in 2D based on the dominant axis and the identification of

overlapping voxels in 3D space. Another known classification divides approaches using graphics pipeline and

computational voxelisation .

3.4.1. Slice-Based

Regarding slice-based voxelisation, several algorithms are proposed .]. The main idea behind this approach is to

perform voxelisation from a viewpoint slice-wise. However, it can miss thin structures (e.g., trees branches) and have

discontinuity between voxels, especially in the case of considering one viewing direction . To capture all pixels

overlapped by triangles and then identity for each pixel depth range along the viewing direction, conservative voxelisation

is proposed . This can definitely address the issues, but some additional voxels may be set in the depth range

computation due to robustness problems .

3.4.2. Rasterisation

Many approaches perform triangle rasterisation obtaining a voxelised model. Some of them use bounding boxes of

triangles to test which voxels to cover , while others rely on a tile-based voxelisation where triangles are

assigned to each tile they overlap.

[33][53]

[64][65]

[66]

[67]

[68]

[46]

[3][54][56][57][58]

[62]

[3][26][59][60][61]

[46][64][65][66][68]

[33][53]

[69]

[14][35]

[3]

[70]

[3]

[3][63][71] [26][72][73]

Using a triangle/box overlapping technique it is possible to assign one thread per triangle and test each pixel for coverage.

This approach relies on a 2D axis-aligned box to test coverage. Tile-based approaches as discussed previously can boost

voxelisation performance since not all pixels will be tested. Both approaches are suitable for running the voxelisation in

parallel to achieve fast performance . However, there can be a huge overhead if models are represented by small

triangles compared to a selected pixel size . To mitigate this issue Pantaleoni introduced coarse and fine rasterisation,

where tiles are split based on the number of triangles during the coarse rasterisation for better load balancing in the fine

rasterisation step afterwards. A similar approach was presented by Kalojanov concentrating more on fast rendering,

keeping all overlapping triangles per voxel, where conservative voxelisation was not strictly identified. Another approach

using point-tessellated voxelisation is proposed afterwards . The method calculates a triangle tessellation factor to

subdivide triangles into micro triangles, in which centroids are voxelised afterwards to obtain a voxelised model. However,

this approach can miss voxelising some voxels and it is not necessarily quicker. Recent work uses line voxelisation at its

core to identify filled voxels for each triangle of a surface model . By using either SLV or ILV approach a suvercover or

26-tunnel-free surface voxelisation can be identified. The method can downgrade the voxelisation to generate tinner

surfaces like 18- or 6-tunnel-free ones. A hybrid approach relying on tile-based rasterisation and raycasting is also

proposed for effective rendering of surface and solid voxelisation .

3.4.3. Comparison of Surface Voxelisation Algorithms

Table 3 shows the most recent methods used to achieve fast surface voxelisation, where most of them use rasterisation

to identify a voxel representation. Some of the methods are more flexible and can achieve with small modifications

different voxelisation properties, whereas others are more specific. It is hard to tell which method is the most robust, but

possibly the methods by Pantaleoni and Zhang can be suggested as the best. In comparison, the method

presented by Zhang outperformed the ones presented by Pantaleoni, where the ILV method generated slightly more

voxels. However, it is pointed out by the authors that additional information (colour, surface normal vectors, and so on)

cannot be stored during voxelisation, which is not the case with Pantaleoni’s approaches.

Table 3. Surface voxelisation algorithms.

Method Type Property Main Technique General Purpose

Slice-based ‘26-connected’ Plane slicing Rendering

Slice-based ‘26-connected’ Depth peeling Rendering

Slice-based Conservative Bounding box Collision detection

Rasterisation 26-connected Bounding box Rendering

Rasterisation 26-connected Bounding box Rendering

Rasterisation 26-connected Tile-based Voxelisation

Rasterisation Conservative & 26-
connected Bounding box Voxelisation

Rasterisation ‘Conservative’ Two level grids Rendering

Rasterisation Conservative & 26-
connected Tile-based & bucketing Voxelisation &

rendering

Rasterisation 26-connected Point tessellation Voxelisation

Raycasting 6/26-connected Intersecting targets Voxelisation

Rasterisation 6/26-connected ILV Voxelisation

Rasterisation &
raycasting Conservative Tile-based + ray-triangle

intersection
Voxelisation &

rendering

3.5. Solid Voxelisation

As opposed to voxels covering a shell (i.e., surface) of an object, in a solid voxelisation, voxels whose centroids are inside

the object are taken into account. Sometimes a boundary representing the surface of a solid object can be voxelised as

well . Methods utilised to acquire solid voxelisation are similar to the surface ones, considering either rasterisation or

slicing . Solid voxelisation can be used for translucency effects, volume visualisations used to show CT

scans, particle collision detection and interaction, morphological operations, and CSG operations . By counting the

[3][26]

[74]

[75]

[32]

[33]

[37]

[26] [33]

[35]

[14]

[70]

[63]

[71]

[73]

[3]

[75]

[26]

[32]

[46]

[33]

[37]

[35] [3]

[2][28][31][35][76]

[31]

number of voxels representing an object, volume can be calculated , which can be identified even more accurately if

object-voxel coverage factor is recorded .

It should point out that all current approaches are concentrating on solid voxelisation of watertight models. In watertight

models, all points of each connected component have a clear separation between the interior and exterior.

3.5.1. Slice-Based

A slice-based algorithm for solid voxelisation using a clipping plane to generate a 2D slice is proposed , where a logical

XOR operation between the previous and current slices are used to achieve a solid voxelisation. However, only a binary

voxelisation is generated due to XOR operations, and some voxels can be missed. An approach relying on surface

voxelisation and consequent 2D scan-filling in all three directions is proposed . This approach suggests encoding

binary voxels in separate bits of multiple targets, enabling processing many slices in a single pass. However, the algorithm

fails if two fragments are located in the same voxel. An algorithm achieving multi-valued solid voxelisation is suggested

using depth buffer and stencil buffer to create a mask for solid slice creation . Building on top of their previous research

, an approach for solid voxelisation is presented where all slices are processed at a time using more robust bitwise OR

operation . The authors also presented how to achieve solid conservative voxelisation, combining their solid

voxelisation and conservative surface voxelisation of Zhang .

3.5.2. Rasterisation

Two types of triangles-based solid voxelisation are presented . The first one is based on rasterisation of each triangle

considering their bounding boxes, while the other one assigns triangles into tiles to speed up the voxelisation process for

situations when the grid size is large, or the model contains many triangles. For both approaches, flipping the voxels in

one direction is necessary to achieve solid voxelisation. The authors proposed one more approach which uses sparse

octree performing first slightly modified conservative surface voxelisation to identify active voxels that will be stored in an

octree, followed by hierarchical inside/outside propagation to achieve solid voxelisation. This approach is slower than the

other two, whereas it requires less memory and enables direct rendering into a sparse spatial data structure.

3.5.3. Comparison of Solid Voxelisation Algorithms

Table 4 shows the most recent approaches used for solid voxelisation, where the approaches by Schwarz and Seidel

and Eisemann and Décoret represent state-of-the-art methods for solid voxelisation. In general, Schwarz and Seidel

approaches outperformed the approach of Eisemann and Décoret for smaller grid sizes, while the former one was faster

for more complex models. The inner part of objects is usually voxelised, but these methods can be relatively easily

extended to obtain the surface’s voxels at the same time.

Table 4. Solid voxelisation algorithms.

Method Type Property Main Technique General Purpose

Slice-based Interior only Plane slicing Voxelisation

Slice-based Interior only Surface voxelisation + 2D scan-filling Voxelisation

Slice-based Interior only Bitwise OR operation Rendering

Slice-based Interior only Mask creation Voxelisation

Slice-based Interior only & conservative Single pass & bitwise OR operation Voxelisation

Rasterisation Interior only Tile-based, bounding box, sparse octree Voxelisation & storage

4. Conclusions

We see that voxelisation is used in many areas, and it can be quite diverse in many aspects. In Section 2, we covered the

main concepts considered in voxelisation such as connectivity, separability, coverage, as well as tunnel-freeness. We can

say that 26-connected voxelisation usually requires less time and memory to be created and stored compared to 6-

connected and conservative voxelisation. A 6-separated voxelisation is usually sufficient for applications such as fluid

simulations. For collision detection, occlusion culling and visibility processing conservative voxelisation is highly desirable.

Tunnelling can be addressed if 6-connected voxelised lines are used to send rays or to intersect with objects. The other

[77]

[3]

[35]

[76]

[28]

[2]

[31]

[70]

[3]

[3]

[31]

[35]

[76]

[2]

[28]

[31]

[3]

option would be to consider either 6-connected or conservative voxelisation for all objects. The usage of binary and non-

binary voxelisation is presented as well, indicating that non-binary voxelisation might be even more applicable than binary

one.

Regarding 3D primitives, we examined voxelisation of points, lines, triangles, surfaces, and solids. In terms of line

voxelisation, we split the algorithms into three groups, where the first two deal with different types of connectivity, while the

third group focuses on voxelisation of curves. For triangles, we examined how rasterisation and raycasting techniques can

be used. In terms of surfaces and solids, we identified that slice-based and rasterisation techniques are mainly used to

perform voxelisation. We can see that surface voxelisation is investigated by the greatest number of researchers. There

are several reasons for this. Firstly, surface voxelisation achieves smaller memory output and is faster compared to solid

voxelisation. Secondly, some of the very common requirements such as collision detection, fluid simulations and ray

tracing can be easily achieved based on them. We should point out that all algorithms for solid voxelisation concentrate on

the voxelisation of watertight models, which is not necessarily sufficient for some application domains like building

information modelling (BIM) where objects may have overlaps.

We presented here a vast number of algorithms targeting voxelisation of different geometric primitives. The greatest

challenge is the availability of these algorithms for testing and further research, which usually requires building them from

scratch in a possibly nonoptimal way. Therefore, creating a library with these algorithms would definitely facilitate the

development of new approaches for voxelisations. Another interesting idea is to develop a database that would use some

of the presented data structures to effectively store and process voxels.

References

1. Amanatides, J.; Woo, A. A Fast Voxel Traversal Algorithm for Ray Tracing; Eurographic: Goslar, Germany, 1987; Volum
e 87, pp. 3–10.

2. Eisemann, E.; Décoret, X. Fast scene voxelization and applications. In Proceedings of the 2006 Symposium on Interact
ive 3D Graphics and Games, Redwood City, CA, USA, 14–17 March 2006; pp. 71–78.

3. Schwarz, M.; Seidel, H.-P. Fast parallel surface and solid voxelization on GPUs. ACM Trans. Graph. 2010, 29, 1–10.

4. Gorte, B.G.H.; Zhou, K.; van der Sande, C.J.; Valk, C. A computationally cheap trick to determine shadow in a voxel mo
del. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 67–71.

5. Reinbothe, C.K.; Boubekeur, T.; Alexa, M. Hybrid Ambient Occlusion; Eurographics: Goslar, Germany, 2009; pp. 51–57.

6. Nichols, G.; Penmatsa, R.; Wyman, C. Interactive, multiresolution image-space rendering for dynamic area lighting. In
Computer Graphics Forum; Blackwell Publishing Ltd.: Oxford, UK, 2010; Volume 29, pp. 1279–1288.

7. Aleksandrov, M.; Zlatanova, S.; Kimmel, L.; Barton, J.; Gorte, B. Voxel-based visibility analysis for safety assessment of
urban environments. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Informa
tion Sciences, Singapore, 24–27 September 2019; Volume 4.

8. Petoussi-Henss, N.; Zankl, M.; Fill, U.; Regulla, D. The GSF family of voxel phantoms. Phys. Med. Biol. 2001, 47, 89–1
06.

9. Caon, M. Voxel-based computational models of real human anatomy: A review. Radiat. Environ. Biophys. 2004, 42, 22
9–235.

10. Nießner, M.; Zollhöfer, M.; Izadi, S.; Stamminger, M. Real-time 3D reconstruction at scale using voxel hashing. ACM Tr
ans. Graph. 2013, 32, 1–11.

11. Beckhaus, S.; Wind, J.; Strothotte, T. Hardware-based voxelization for 3D spatial analysis. In Proceedings of the 5th Int
ernational Conference on Computer Graphics and Imaging, Athens, Greece, 8–10 July 2002; Volume 20.

12. Jørgensen, F.; Møller, R.R.; Nebel, L.; Jensen, N.-P.; Christiansen, A.V.; Sandersen, P.B.E. A method for cognitive 3D g
eological voxel modelling of AEM data. Bull. Eng. Geol. Environ. 2013, 72, 421–432.

13. Stafleu, J.; Dubelaar, C.W. Product specification subsurface model GeoTOP. TNO Rep. 2016, R10133.

14. Li, W.; Fan, Z.; Wei, X.; Kaufman, A. GPU-based flow simulation with complex boundaries. GPU Gems 2003, 2, 747–7
64.

15. Huang, M.; Wei, P.; Liu, X. An efficient encoding voxel-based segmentation (EVBS) algorithm based on fast adjacent v
oxel search for point cloud plane segmentation. Remote Sens. 2019, 11, 2727.

16. Poux, F.; Billen, R. Voxel-based 3D point cloud semantic segmentation: Unsupervised geometric and relationship featur
ing vs deep learning methods. ISPRS Int. J. Geo-Inf. 2019, 8, 213.

17. Vo, A.-V.; Truong-Hong, L.; Laefer, D.F.; Bertolotto, M. Octree-based region growing for point cloud segmentation. ISPR
S J. Photogramm. Remote Sens. 2015, 104, 88–100.

18. Kyaw, A.S. Unity 4. X Game AI Programming; Packt Publishing Ltd.: Birmingham, UK, 2013.

19. Gorte, B.; Aleksandrov, M.; Zlatanova, S. Towards egress modelling in voxel building models. ISPRS annals of the phot
ogrammetry, remote sensing and spatial information sciences. In Proceedings of the 4th International Conference on S
mart Data and Smart Cities, Kuala Lumpur, Malaysia, 1–3 October 2019; Volume 4.

20. Gorte, B.; Zlatanova, S.; Fadli, F. Navigation in indoor voxel models. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf.
Sci. 2019, 4, 279–283.

21. Boyles, M.; Fang, S. Slicing-based volumetric collision detection. J. Graph. Tools 1999, 4, 23–32.

22. Silver, D.; Gagvani, N. Shape-based volumetric collision detection. In Proceedings of the 2000 IEEE Symposium on Vol
ume Visualization (VV 2000), Salt Lake City, UT, USA, 9–10 October 2000; pp. 57–61.

23. Cohen-Or, D.; Kaufman, A. 3D line voxelization and connectivity control. IEEE Comput. Graph. Appl. 1997, 17, 80–87.

24. Dachille, F., IX; Kaufman, A. Incremental triangle voxelization. In Proceedings of the Graphics Interface, Montreal, QC,
Canada, 15–17 May 2000; pp. 205–212.

25. Kaufman, A.; Shimony, E. 3D scan-conversion algorithms for voxel-based graphics. In Proceedings of the 1986 worksh
op on Interactive 3D graphics, New York, NY, USA, 1 January 1987; pp. 45–75.

26. Pantaleoni, J. VoxelPipe: A programmable pipeline for 3D voxelization. In Proceedings of the ACM SIGGRAPH Sympos
ium on High Performance Graphics, Vancouver, BC, Canada, 5–7 August 2011; pp. 99–106.

27. Cohen-Or, D.; Kaufman, A. Fundamentals of surface voxelization. Graph. Model. Image Process. 1995, 57, 453–461.

28. Liao, D. GPU-accelerated multi-valued solid voxelization by slice functions in real time. In Proceedings of the 24th Spri
ng Conference on Computer Graphics, Budmerice, Slovakia, 21–23 April 2008; pp. 113–120.

29. Wang, S.W.; Kaufman, A.E. Volume sampled voxelization of geometric primitives. In Proceedings Visualization’93, San
Jose, CA, USA, 25–29 October 1993; IEEE: New York, NY, USA, 1999; pp. 78–84.

30. Crassin, C.; Green, S. Octree-based sparse voxelization using the GPU hardware rasterizer. OpenGL Insights 2012, 30
3–318. Available online: https://research.nvidia.com/publication/octree-based-sparse-voxelization-using-gpu-hardware-r
asterizer (accessed on 30 November 2021).

31. Eisemann, E.; Décoret, X. Single-pass gpu solid voxelization and applications. In Proceedings of the GI’08: Proceeding
s of the Graphics Interface, Windsor, ON, Canada, 28–30 May 2008.

32. Fei, Y.; Wang, B.; Chen, J. Point-tessellated voxelization. In Proceedings of the Graphics Interface 2012, Toronto, ON,
Canada, 28–30 May 2012; pp. 9–18.

33. Zhang, Y.; Garcia, S.; Xu, W.; Shao, T.; Yang, Y. Efficient voxelization using projected optimal scanline. Graph. Models
2018, 100, 61–70.

34. Sramek, M.; Kaufman, A.E. Alias-free voxelization of geometric objects. IEEE Trans. Vis. Comput. Graph. 1999, 5, 251
–267.

35. Fang, S.; Chen, H. Hardware accelerated voxelization. Comput. Graph. 2000, 24, 433–442.

36. Heidelberger, B.; Teschner, M.; Gross, M.H. Volumetric collision detection for derformable objects. CS Tech. Rep. 2003,
395, 9.

37. Young, G.; Krishnamurthy, A. GPU-accelerated generation and rendering of multi-level voxel representations of solid m
odels. Comput. Graph. 2018, 75, 11–24.

38. Zhang, Z.; Morishima, S.; Wang, C. Thickness-aware voxelization. Comput. Animat. Virtual Worlds 2018, 29, e1832.

39. Sigg, C.; Peikert, R.; Gross, M. Signed distance transform using graphics hardware. In Proceedings of the IEEE Visuali
zation, Seattle, WA, USA, 22–24 October 2003; IEEE: Manhattan, NY, USA, 2003; pp. 83–90.

40. Varadhan, G.; Krishnan, S.; Kim, Y.J.; Diggavi, S.; Manocha, D. Efficient max-norm distance computation and reliable v
oxelization. In Symposium on Geometry Processing; ACM Digital Library: New York, NY, USA, 2003; pp. 116–126.

41. Jones, M.W.; Baerentzen, J.A.; Sramek, M. 3D distance fields: A survey of techniques and applications. IEEE Trans. Vi
s. Comput. Graph. 2006, 12, 581–599.

42. Novotny, P.; Dimitrov, L.I.; Sramek, M. Enhanced voxelization and representation of objects with sharp details in truncat
ed distance fields. IEEE Trans. Vis. Comput. Graph. 2009, 16, 484–498.

43. Stolte, N. Robust Voxelization of Surfaces; Center for Visual Computing and Computer Science Department, State Univ
ersity of New York at Stony Brook: Stony Brook, NY, USA, 1997; Available online: http://citeseerx.ist.psu.edu/viewdoc/d

ownload?doi=10.1.1.22.1047&rep=rep1&type=pdf (accessed on 30 November 2021).

44. Liao, D.; Fang, S. Fast CSG voxelization by frame buffer pixel mapping. In Proceedings of the 2000 IEEE Symposium
on Volume Visualization (VV 2000), Salt Lake City, UT, USA, 9–10 October 2000; IEEE: Manhattan, NY, USA, 2000; p
p. 43–48.

45. Gorte, B.; Zlatanova, S. Rasterization and Voxelization of Two- and Three-dimensional Space Partitionings. Int. Arch. P
hotogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 283–288.

46. Nourian, P.; Gonçalves, R.; Zlatanova, S.; Ohori, K.A.; Vo, A.V. Voxelization Algorithms for Geospatial Applications: Co
mputational Methods for Voxelating Spatial Datasets of 3D City Models Containing 3D Surface, Curve and Point Data
Models. MethodsX 2016, 3, 69–86.

47. Birdsall, C.K. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC. IE
EE Trans. Plasma Sci. 1991, 19, 65–85.

48. Wu, X. An efficient antialiasing technique. ACM Siggraph Comput. Graph. 1991, 25, 143–152.

49. Bresenham, J.E. Algorithm for computer control of a digital plotter. IBM Syst. J. 1965, 4, 25–30.

50. Fujimoto, A.; Tanaka, T.; Iwata, K. Arts: Accelerated ray-tracing system. IEEE Comput. Graph. Appl. 1986, 6, 16–26.

51. Liu, X.W.; Cheng, K. Three-dimensional extension of Bresenham’s algorithm and its application in straight-line interpola
tion. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2002, 216, 459–463.

52. Laine, S. A topological approach to voxelization. Comput. Graph. Forum 2013, 32, 77–86.

53. Håkansson, T. A Comparison of Optimal Scanline Voxelization Algorithms. Master’s Thesis, Computer Science and Soft
ware Engineering, Linköping University, Linköping, Sweden, 2020.

54. Pineda, J. A parallel algorithm for polygon rasterization. In Proceedings of the 15th Annual Conference on Computer Gr
aphics and Interactive Techniques, New York, NY, USA, 1–5 August 1988; pp. 17–20.

55. Akenine-Möller, T.; Aila, T. Conservative and tiled rasterization using a modified triangle set-up. J. Graph. Tools 2005, 1
0, 1–8.

56. Woo, R.; Choi, S.; Sohn, J.-H.; Song, S.-J.; Bae, Y.-D.; Yoo, H.-J. A low-power 3D rendering engine with two texture uni
ts and 29-Mb embedded DRAM for 3G multimedia terminals. IEEE J. Solid-State Circuits 2004, 39, 1101–1109.

57. Akenine-Möller, T.; Ström, J. Graphics for the masses: A hardware rasterization architecture for mobile phones. In ACM
SIGGRAPH 2003 Papers; Association for Computing Machinery: New York, NY, USA, 2003; pp. 801–808.

58. Ma, Y.; Wang, X.; Zhu, M.; Wan, W. Rasterization of geometric primitive in graphics based on FPGA. In Proceedings of
the 2010 International Conference on Audio, Language and Image Processing, Shanghai, China, 23–25 November 201
0; IEEE: Manhattan, NY, USA, 2010; pp. 1211–1216.

59. McCormack, J.; McNamara, R. Tiled polygon traversal using half-plane edge functions. In Proceedings of the ACM SIG
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware, Interlaken, Switzerland, 21–22 August 2000; Association
for Computing Machinery: New York, NY, USA, 2000; pp. 15–21.

60. Abrash, M. Rasterization on Larrabee. Dr. Dobbs J. 1 May 2009. Available online: http://www.cs.cmu.edu/afs/cs.cmu.ed
u/academic/class/15869-f11/www/readings/abrash09_lrbrast.pdf (accessed on 30 November 2021).

61. Sun, C.-H.; Tsao, Y.-M.; Lok, K.-H.; Chien, S.-Y. Universal Rasterizer with edge equations and tile-scan triangle travers
al algorithm for graphics processing units. In Proceedings of the 2009 IEEE International Conference on Multimedia an
d Expo, New York, NY, USA, 28 June–3 July 2009; IEEE: New York, NY, USA, 2009; pp. 1358–1361.

62. Wang, X.; Guo, F.; Zhu, M. A more efficient triangle rasterization algorithm implemented in FPGA. In Proceedings of the
2012 International Conference on Audio, Language and Image Processing, Shanghai, China, 16–18 July 2012; pp. 110
8–1113.

63. Fatahalian, K.; Luong, E.; Boulos, S.; Akeley, K.; Mark, W.R.; Hanrahan, P. Data-parallel rasterization of micropolygons
with defocus and motion blur. In Proceedings of the Conference on High Performance Graphics 2009, New York, NY, U
SA, 1–3 August 2009; pp. 59–68.

64. Möller, T.; Trumbore, B. Fast, minimum storage ray-triangle intersection. J. Graph. Tools 1997, 2, 21–28.

65. Shevtsov, M.; Soupikov, A.; Kapustin, A.; Novorod, N. Ray-triangle intersection algorithm for modern CPU architecture
s. In Proceedings of the GraphiCon, Moscow, Russia, 30 October 2007; Volume 2007, pp. 33–39.

66. Assarsson, U.; Moller, T. Optimized view frustum culling algorithms for bounding boxes. J. Graph. Tools 2000, 5, 9–22.

67. Badouel, D. An efficient ray-polygon intersection. In Graphics Gems; Academic Press Professional: San Diego, CA, US
A, 1990; pp. 390–393.

68. Haines, E. Point in Polygon Strategies. Graph. Gems 1994, 4, 24–46.

69. Rauwendaal, R. Hybrid Computational Voxelization Using the Graphics Pipeline. Master’s Thesis, Oregon State Univer
sity, Corvallis, OR, USA, 2012.

70. Zhang, L.; Chen, W.; Ebert, D.S.; Peng, Q. Conservative voxelization. Vis. Comput. 2007, 23, 783–792.

71. Liu, F.; Huang, M.-C.; Liu, X.-H.; Wu, E.-H. Freepipe: A programmable parallel rendering architecture for efficient multi-f
ragment effects. In Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, Wa
shington, DC, USA, 19–21 February 2010; pp. 75–82.

72. Seiler, L.; Carmean, D.; Sprangle, E.; Forsyth, T.; Dubey, P.; Junkins, S.; Lake, A.; Cavin, R.; Espasa, R.; Grochowski,
E.; et al. Larrabee: A many-core x86 architecture for visual computing. ACM Trans. Graph. 2009, 29, 10–21.

73. Eisenacher, C.; Loop, C.T. Data-parallel micropolygon rasterization. In Eurographics (Short Papers); European Associat
ion for Computer Graphics: Norrköping, Sweden, 2010; pp. 53–56.

74. Faieghi, M.; Tutunea-Fatan, O.R.; Eagleson, R. Fast and cross-vendor OpenCL-based implementation for voxelization
of triangular mesh models. Comput. Aided. Des. Appl. 2018, 15, 852–862.

75. Kalojanov, J.; Billeter, M.; Slusallek, P. Two-level grids for ray tracing on GPUs. Comput. Graph. Forum 2011, 30, 307–
314.

76. Dong, Z.; Chen, W.; Bao, H.; Zhang, H.; Peng, Q. Real-time voxelization for complex polygonal models. In Proceedings
of the 12th Pacific Conference on Computer Graphics and Applications, Seoul, Korea, 6–8 October 2004; IEEE: Manha
ttan, NY, USA, 2004; pp. 43–50.

77. Reitinger, B.; Bornik, A.; Beichel, R. Efficient volume measurement using voxelization. In Proceedings of the 19th Sprin
g Conference on Computer Graphics, New York, NY, USA, 24–26 April 2003; pp. 47–54.

Retrieved from https://encyclopedia.pub/entry/history/show/42524

