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The autonomous and adaptable identification of anomalies in industrial contexts, particularly in the physical

processes of Cyber-Physical Production Systems (CPPS), requires using critical technologies to identify failures

correctly. Most of the existing solutions in the anomaly detection research area do not consider such systems’

dynamics. Immune-based models, such as the Dendritic Cell Algorithm (DCA), may provide a rich source of

inspiration for detecting anomalies. Cursory Dendritic Cell Algorithm (CDCA), is a novel variation of the Dendritic

Cell Algorithm (DCA), developed to be flexible and monitor physical industrial processes continually while detecting

anomalies in an online fashion. 

Artificial Immune Systems  Dendritic Cell Algorithm  Cyber-Physical Production Systems

Anomaly Detection

1. Introduction

Industry 4.0 (I4.0) is a highly appealing paradigm established originally in Germany and spread throughout Europe.

It is characterized as the merger of the Internet and adaptable items (“smart”  machinery and goods) with existing

digitized industry. Access to the Internet through Cyber-Physical Production Systems (CPPS) is one of the primary

facilitators of I4.0, and this combination is commonly referred to as the Industrial Internet of Things (IIoT). The use

of the Internet of Things (IoT) in I4.0 enables devices to be more flexible in how they interface and behave, as well

as the integration of significantly more complex architectures in smart and autonomic industrial scenarios, such as

components that process massive amounts of data (Big Data), and distributed computation in the Cloud/Edge

layer.

This synergy among technologies enables CPPS components in I4.0 to be autonomic since components can

organize themselves in a network based on the context in which they are inserted, can monitor their environment,

assess potential problems, and adapt, resulting in a decentralized system . As time passes, CPPS tend to have

more and more devices linked in a network, greater Internet access, and less human involvement , as CPPS is

often viewed as a vital element in the notion of IIoT and the Fourth Industrial Revolution.

At their foundation, CPPS are a combination of computing and physical processes that are aligned with

communication networks . While typical embedded systems integrate computing with real-world interactions,

CPPS place a particular emphasis on inter-device communication, according to Jazdi . They are frequently
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integrated into feedback loops in which the cyber component (control, communication and computation in general)

and physical component (the physical process, measurements by sensors and actuator impacts) are tightly

coupled, just as with embedded systems, but with the added component of subsystem interactions due to their

ability to communicate with each other. This increases the complexity and dynamism of such systems, which are

frequently challenging to manage in centralized and prescribed techniques.

A CPPS is thought to be a safety-critical system in many of its application scenarios, where a variation in

conventional behavior might result in substantial economic losses and material damage, if not human lives.

Over the years, several attacks have tackled Industrial Control Systems (ICS), which had a considerable impact on

the physical processes. Some known examples are the Stuxnet worm , the Ukraine SCADA attack , the Mirai

attack , Maroochy Water Services in Australia (2000), German Steel Mill Thyssenkrupp (2014), and Norsk Hydro

Aluminium (2019) .

To address this problem, designing robust CPPS is critical, mainly when under equipment faults, caused by attacks

or not. Furthermore, due to the rise of automation and system dynamics, increased complexity makes assaults and

naturally occurring errors more difficult to detect, analyze, and resolve by a human operator. This motivates the

need for CPPS to identify such anomalies and take relevant action. Furthermore, since the reaction to mitigate the

impact of anomalies should be fast, CPPS have real-time needs .

2. Anomaly Detection

Anomaly detection refers to algorithms that analyze data to identify anomalies or outliers. An anomaly may appear

gradually in manufacturing processes, such as tool/wheel wear. It might be sudden, such as tool breakage, or it

could be avoidable, such as excessive vibration/chatter. So, process anomaly detection is critical since knowledge

of tool wear is required for scheduling tool changes, detection of tool breakage is required for salvaging the

workpiece and the machine, and recognizing chatter is required for initiating remedial action .

An anomaly detection algorithm can be trained using previous information or typical operating circumstances. This

is why process monitoring is so important, which refers to the capture, manipulation, and analysis of sensor

readings to identify the condition of a process. In either instance, a profile of what is to be regarded as usual is

constructed. The algorithm then accepts input data and determines whether it is consistent with its normal behavior

or an outlier. A process set of variables (e.g., force, speed, motion, temperature, pressure, power, acoustic

emission, feed motor current, and so on) is measured, processed online, and compared to their predicted values

for this purpose. Any variations from predicted values are blamed on process anomalies .

A process anomaly is a deviation from normal process behavior linked to various sources. It is defined as an

unallowable divergence of at least one system characteristic property (feature) from the accepted or normal

operating state. Facing an anomaly, if no recovery decisions are made, it may result in malfunctions or failures,

which are long-term disruptions in a system’s capacity or performance to fulfill a necessary function under specified

operating parameters.
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Anomalies can express themselves in three ways, according to Chandola et al. :

Point anomaly: this is the most basic situation in which a single data instance is abnormal compared to the rest

—for example, if a data instance has a greater value than those of all other data instances.

Contextual anomaly: a data instance that is out of place in its context. The definition of context varies depending

on the situation. A recorded average yearly temperature of 9 °C in the Amazon rainforest, for example, can be

considered as a contextual anomaly because it is abnormal in the context in which it is recorded (here, the

context is longitude and latitude). However, such an average yearly temperature would not be anomalous in all

contexts (e.g., Europe).

Collective anomaly: this occurs when a connected data group is deviant compared to the total dataset. For

example, suppose a periodic behavior that repeats for every constant time interval abruptly changes for a single

period. In this case, that period alone is not anomalous, nor is any point in the context deviating from the

sequence. However, the entire period behaves inconsistently when compared to surrounding data points,

despite possibly not having any significantly high values or a high rate of change.

As previously stated, anomaly detection seeks to find data items that are out of the ordinary compared to “normal”

ones. The first issue is defining what is normal and abnormal in a way that is objective and calculable. This

definition changes according to the technique adopted by a particular algorithm. There are three primary

techniques to establishing what defines an anomaly: (i) distance based: outliers are defined by their distance from

other data points; (ii) density based: outliers are data points that are found in lower density locations; (iii) rank

based: outliers are data points whose nearest neighbors have other data points as nearest neighbors.

Furthermore, anomaly detection algorithms can be further classified as hard computing based and soft computing

based. Hard computing includes probabilistic learning, knowledge, and ML-based techniques, while soft computing

includes branches such as fuzzy logic, genetic algorithms, ant colony optimization, and artificial immune systems.

Finally, there are combination learners, which include hybrid and ensemble-based algorithms.

Data have a known distribution and parameters in parametric anomaly detection (e.g., normal distribution

characterized by mean and standard deviation). On the other hand, prior knowledge of data may be known in non-

parametric techniques, but their distribution is unknown. This can be accomplished using: (i) a supervised

algorithm, in which all data points used have a known classification through the use of labels (e.g., “anomalous”

and “normal”); (ii) an unsupervised algorithm, in which data points have no labeling and data patterns and

relationships are learned; (iii) a semi-supervised algorithm, by employing a small amount of labeled data and

applying that knowledge to attempt learning on additional, unlabeled data, where the latter constitutes the majority

of all data, which can be accomplished by applying what was learned in a supervised setting, for example, to label

the unlabeled data.

[11]



Bio-Inspired Anomaly Detection with Cursory Dendritic Cell Algorithm | Encyclopedia.pub

https://encyclopedia.pub/entry/19364 4/12

Finally, the application environment in which anomaly detection happens can be online or offline. Offline anomaly

detection refers to the examination of comprehensive and collected data at any point in the past, with loose limits

on the methods employed since they can be more complicated and do not need to provide rapid reaction times. On

the other hand, online anomaly detection is either real-time or near real time and is frequently coupled with data

streaming, resulting in a continuous process of data gathering and anomaly detection.

2.1. Anomaly Detection in CPPS

As previously said, the I4.0 paradigm emergence has some difficulties. Using anomaly detection in this context

entails identifying essential components of these issues and the standard anomaly detection in time series

problems. These issues vary depending on the unique context of industrial application, but a good anomaly

detection technique must include the following features:

Generalization: It is impossible to forecast the kinds of anomalies that will arise and how they will emerge in a

time series. For example, if a time series is highly periodic, techniques that account for seasonal trends will do

very well in identifying deviations. Nevertheless, the same strategy would perform poorly in unstable time

series. A decent anomaly detection technique must be consistently successful in an agnostic way to time series

typical behavior and presume that the intended behavior is dynamic.

Time performance: In industrial applications, anomaly detection must be discovered within usable time, since

late detection can result in massive losses and jeopardize safety.

Resource efficiency: According to the I4.0 concept, CPPS components are anticipated to be self-monitoring. As

a result, components must execute anomaly detection decentralized, which raises issues about resource

utilization. These components are frequently resource constrained, both in themselves and in their use of

network infrastructures (i.e., communication itself must be efficient).

Little need for labeled data: There is a scarcity of publicly accessible datasets for industrial settings under

assault. Many techniques to appropriate learning need massive volumes of data, which are not feasible in this

scenario. Furthermore, depending on the labeled data, techniques may eventually have difficulties adapting

effectively if the system since the model would overfit the data from which it has learned, which would be

contrary to the feature indicated in the first bullet point.

Robustness and safety: Components must be able to adapt to unfavorable situations by continuing regular

operation without jeopardizing the equipment’s or human life’s safety.

These difficulties are not trivial, and to the best of knowledge, no solution seeks to handle all of them

simultaneously. Instead, they focus on a subset of them most of the time. Some of these challenges motivate the

design and development of AIS applied to anomaly detection.

2.2. AIS for Anomaly Detection
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According to Tokarev et al. , AIS is one of the most promising current solutions to the problem of anomaly

detection. These approaches offer a great degree of generality, are usually computationally efficient, and consume

fewer resources. Costa Silva et al.  defend that the use of immune-inspired approaches for anomaly detection

has been adopted in the literature because of its analogy with body resistance in the human immune system

provided against agents which causes diseases. According to them, the applicability of AIS in anomaly detection

consists mainly of the self–nonself discrimination and the danger models, which refer to the NSA  and DCA 

.

On the one hand, the NSA is a straightforward and intuitive algorithm for anomaly detection that analyzes the

feature space and generates detectors in the nonself region. Because the self data are utilized as a reference, the

detectors are positioned outside the self zone. This means that the overall process is similar to supervised and

semi-supervised machine learning approaches. NSA has significant problems concerning the system context.

Additionally, it scales poorly with data size, as detectors frequently overlap and leave gaps between them, failing to

identify several anomalies. Finally, the process to measure the similarity between detectors and data can be pretty

expensive.

On the other hand, the DCA is the most notorious danger model-based algorithm, and it relies significantly on the

correlation mechanism between the antigen and input signals (behavior of the system). Compared with NSA, the

DCA is super lightweight and eliminates the need to define normal (self data). However, it requires prior knowledge

or modeling of the problem. Otherwise, input signals and antigens are not modeled correctly. Consequently, the

pre-processing data stage is critical. In some contexts, to calculate the safe and danger signals, it is necessary to

distinguish between self and nonself data. So, despite resembling an unsupervised machine learning approach,

there is a strong dependency on the existing expert knowledge about the context of the application. Moreover, in

the classification stage, the algorithm requires the entire DC population for cell maturation and overall antigen

classification, gather then having only a particular data point to mature before categorizing said data point. This

makes the algorithm unsuitable for online anomaly detection as it is.

In their work, Costa Silva et al.  compared both models using the UCI Breast Cancer Database, and reached the

conclusion that there is no better immune-inspired model than another in terms of anomaly detection. Depending

on the context of application and the problem definition, there are cases in which the DCA may overcome the NSA

and vice versa. So, considering the features about anomaly detection in CPPS mentioned before, in theory, DCA is

more suitable compared with NSA, since it is more lightweight, and in consequence, resource efficient, and was

less dependent on labeled data. However, the limitations regarding the overall algorithm’s data structures and

procedural operations understanding, online application, and initial problem modeling leave room for improvement

if this algorithm is intended to be used for anomaly detection in industrial scenarios.

Regarding the overall algorithm’s understanding, Gu et al.  proposed a formal mathematical definition of the

deterministic Dendritic Cell Algorithm (dDCA). This work helped the research community understand the algorithm

and avoid ambiguities since previous investigations focused mainly on empirical aspects. Later, Greensmith and
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Gale  proposed a specification of the dDCA using functional programming (in Haskell programming language),

which on the contrary to the previous work, is targeted to a computer science audience.

Considering the limitation of applying DCA in online classification problems, such as anomaly/intrusion detection,

Gu et al.  proposed a real-time or near real-time analysis component by applying segmentation to the current

output of the DCA into slices. The researchers tested the proposed approach in the SYN scan dataset, a large real-

world dataset based on a medium-scale port-scan of a university computer network. The results show that

segmentation applies to the DCA for real-time analysis since, in some cases, segmentation produces better results

when compared with the standard algorithm. Later, Yuan and Chen  also proposed a real-time analysis to the

DCA, where an antigen presented by sufficient dendritic cells is immediately assessed. The researchers validated

the proposed approach in the UCI Wisconsin Breast Cancer dataset. The results are promising, showing that the

algorithm achieves considerable accuracy.

More recently, Pinto et al. proposed the incremental Dendritic Cell Algorithm (iDCA)  as a method to detect

network intrusions in a real-time industrial Machine-to-Machine (M2M) scenario. For validation of the iDCA, two

network intrusion detection datasets were used in an online classification scenario, namely, the KDD Cup99 and

the M2M using OPC UA datasets. The results show that the approach is a viable solution to detect anomalies in

(near) real-time, especially in environments with little a priori system knowledge for intrusion detection.

As for problem modeling in the DCA, as mentioned before, the DCA avoids a model training step, but it requires

domain or expert knowledge for data pre-processing. Gu et al.  attempted to use the Principal Component

Analysis (PCA) technique to categorize input data in DCA automatically. This way, it is possible to avoid manually

over-fit the data to the algorithm every time a new problem context is considered, which is undesirable.

Experimental results were performed in the Stress Recognition in Automobile Drivers dataset and have shown that

the application of PCA to the DCA for automated data pre-processing is successful. Later, Chelly and Elouedi 

reviewed the pre-processing data phase of the DCA while making a comparative study of data reduction

techniques within the DCA, based mainly on Rough Set Theory (RST) usage in the pre-processing phase. The

researchers used multiple real-valued and binary-classification datasets. The results show that different DCA

versions outperform known Machine Learning classifiers in the literature, namely Support Vector Machine (SVM),

Artificial Neural Network (ANN), and Decision Tree (DTree), in terms of the overall classification accuracy.

3. Cursory Dendritic Cell Algorithm

The development of the CDCA aims at solving or reducing the impact of the main limitations of DCA identified

earlier. Thus, in this work, three different contributions are proposed. Firstly, researchers propose an object-

oriented specification (using Python) to abstract the algorithm into its main mechanisms and decompose it into a

more modular structure, such that specific components of the algorithm can be updated more independently.

Secondly, researchers propose a near-real-time analysis component, which allows the algorithm to present

intermediate classification results to data online, in contrast with its application to entire sets of data. Thirdly,
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researchers enable data-driven approaches to extract signals in the pre-processing stage of the DCA. The problem

modeling process will not require as much expert knowledge as currently.

3.1. Modular Dendritic Cell Algorithm

DCA specification and implementation, using an object-oriented approach, was motivated by the need to adjust

and update the algorithm’s source code. With an object-oriented implementation, experimentation and changes to

the original algorithm become easier to develop and test.

The decomposition of the DCA presented was carried out by identifying the main steps of the algorithm and

abstracting those steps into separate classes (modules). The rationale for each class is according to the following

steps: (i) the antigens and values are received by the system; (ii) their signals are extracted; (iii) the extracted

signals are distributed into the DC population; (iv) each DC decides how it processes these antigens and signals;

and (v) the antigens are somehow impacted by this processing. Considering this rationale, the following classes

are defined:

Interface: to keep the usage of the algorithm simple, a single interface is used to interact with the system as a

whole. Therefore, the interface can receive antigens, and output antigen classification results. Indeed, the

Interface, as implemented, orchestrates the remaining modules.

Signal Extractor: defines how signals are extracted from data. It receives antigens and associated data, while

outputs safe, danger, PAMP, and inflammation signals from received data and the antigen they are associated

with.

Sampler: decides on a strategy for signals and antigen distribution in the DC population, i.e., which DCs are

attributed to which antigens and signals. It receives the antigens and signals from the Signal Extractor and

chooses specific DCs to receive them.

DC Population: the DCs themselves can receive antigens and signals. Received antigens are stored locally by

each DC. Each DC also has access to the antigen repertoire (see next module), allowing the collected antigen’s

state to be updated by the DC that collects it.

Antigen Repertoire: a database structure holding all Antigens that are given to the system. It might be relevant

to store in the Antigen Repertoire changes in the antigens’ state, for instance, when a DC migrates, or store

information about which mature/semi-mature DC is associated with a given antigen collected. The Interface can

query the Antigen Repertoire to achieve classification.

Each component can be updated separately with this modular approach, and different strategies in different

modules can be implemented.

3.2. Online Dendritic Cell Algorithm
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As previously mentioned, DCA does not support an online anomaly detection capability. The DCA can internally

process input data in real-time, but it requires an analysis stage, which is performed offline. To reduce the impact of

this limitation, the DCA is updated to allow intermediate classification of data and thus, enable near real-time

anomaly detection.

The classification of antigens is accomplished at the end of the algorithm’s data-flow, by calculating the MCAV

value, which consists of the ratio of matured DCs that collect a given antigen, to the total number of times an

antigen is collected. Thus, the classification method was updated in two ways: (i) each time a DC matures, all

antigens it has collected have their MCAV values derived; (ii) each antigen has three possible states: inconclusive,

safe, or dangerous.

All antigens begin as inconclusive. If their MCAV value increases beyond the predetermined threshold, the antigen

is immediately classified as dangerous, i.e., anomalous. If all DCs that collected the antigen have matured, but the

MCAV value has not yet increased beyond the predetermined threshold, the antigen is classified as safe. The

introduction of an “inconclusive” state leads to a lack of immediate classification. Classification will only occur after

a sufficient number of DCs have migrated. On the other hand, classification of “dangerous” antigens is achieved

faster, as this classification is attributed to the antigen as soon as the MCAV increases above the threshold, rather

than waiting for the entire data set to be processed. The classification of “safe” antigens is also faster than waiting

for the entire dataset but is slower than the classification of “dangerous” antigens.

3.3. Data-Driven Dendritic Cell Algorithm

Regarding the difficulty of problem modeling, considering the dependency of previous expert knowledge about the

problem and application context, the pre-processing stage of the DCA was updated to become more data-driven.

This difficulty pertains mainly to the signal extraction procedure, as the DCA does not define how signals are

extracted. Thus, a data-driven approach to signal extraction is suitable for solving this limitation. For this, it was

considered K-Means, as a scalable and inductive clustering algorithm, since it checks essential requirements,

given the context of CPPS, such as:

Suitable for multi-dimensional data processing;

Able to process new, unseen, data;

Usable in an incremental, per-point basis;

Provides a real-valued score suitable for usage as signals;

Scalable with data dimension and size;

Provides real-time processing, such that its usage for online anomaly detection is not prohibitive.
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(i)The Interface receives a predefined number of normal data points, one by one, which will be used as a

baseline for normal behavior.

(ii)The Signal Extractor receives these data points, one by one, and applies a standard K-Means approach for

clustering the data points. Note that, at this stage, a classification is not possible since there is not yet a normal

baseline.

(iii)Eventually, when sufficient training points are received, the Signal Extractor computes each cluster’s

maximum distance from its centroid to each point considered in the cluster, which will serve as radii for each

cluster’s hypersphere. The centroids and radii are stored, but the training data points are not.

(i)The Interface receives each data point, i.e., an antigen, one at a time.

(ii)The Signal Extractor receives each point, and outputs its danger and safe signals, depending on whether

they are inside a hypersphere or not, and how far they are from the closest hypersphere surface. PAMP and

Inflammation signals are not used in CDCA.

(iii)Upon receiving the antigen and resulting signals, the Sampler samples DCs in a sliding window approach (n-

contiguous cells).

K-Means is an algorithm that finds centroids for each cluster of data such that the variance in each cluster is

minimized. The number of clusters is user defined. Therefore, each cluster can be represented in a single point

which constitutes the centroid, and future points can be included in clusters according to their distance to each

cluster’s centroid.

In order to learn what is normal, K-Means first computes the centroids of normal data only. Once this process is

completed, the centroids of data are stored, and the maximum distance for each centroid to the farthest data point

that belongs to its cluster is also stored. These distances will be used as radii, forming a hypersphere per cluster.

Future data points to be classified are compared to these hyperspheres, measuring their distance to the

hypersphere’s surface. If the data point is inside the hypersphere, the distance to its surface constitutes a safe

signal. Otherwise, its distance constitutes a danger signal. Furthermore, if new normal behavior occurs, more

hyperspheres can be produced.

3.4. Proposal Overview

The online adaptation was implemented in the DC Population and in the Antigen Repertoire modules. In the former,

DCs directly notify antigens of their collection and maturation, and in the latter, MCAV values are updated

incrementally. Regarding the data-driven adaptation, the Signal Extractor module is addressed, such that the K-

Means approach is used for the extraction of danger and safe signals from data.

Considering the contributions described previously, the overall CDCA works as such:

Training phase:

Anomaly Detection phase:
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(iv)Each DC receives the signals and computes their costimulatory value (used for migration) and k value (used

to decide whether they migrate as mature or semi-mature). Upon receiving an antigen, each DC notifies the

respective antigen in the Antigen Repertoire of its collection, incrementing its record of the number of times

collected.

(v)Over time, DCs mature, and notify their antigens of the times they matured as mature DC. DCs that mature

as semi-mature also notify antigens.

(vi)When antigens in the Antigen Repertoire achieve high MCAVs, they notify the Interface of their state change,

from “inconclusive” to “dangerous”, i.r., an anomaly has been detected. When antigens in the Antigen

Repertoire have the sum of mDC and smDC to be equal to the times they have been collected, their state

changes from “inconclusive” to “safe”, i.e., the data point is considered normal. Antigens that have notified the

Interface are removed from the Antigen Repertoire.
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