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Promotion of research and development in advanced technology must be implemented in agriculture to increase

production in the current challenging environment where the demand for manual farming is decreasing due to the

unavailability of skilled labor, high cost, and shortage of labor. The demand for fruit harvester technologies, i.e.,

mechanized harvesting, manned and unmanned aerial systems, and robotics, has increased. However, several industries

are working on the development of industrial-scale production of advanced harvesting technologies at low cost, no

commercial robotic arm has been developed for selective harvesting of valuable fruits and vegetables, especially within

controlled strictures, i.e., greenhouse and hydroponic contexts. 
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1. Introduction

Using robotics to accomplish work has become desirable over the last two decades in every field, i.e., industry , medical

, agriculture , and military . Many researchers have discussed the development challenges that arise in the field of

agriculture for fruit and vegetable harvesting and other field operations, i.e., sowing, weeding, and spraying vegetables 

. However, with advancements in the Internet of Things (IoT), sensors, high-speed internet (4G/5G/6G), and robotic

automation with required attachments, developments in agriculture are at their peak, and many operations, i.e., crop

quality and quantity measurement, disease finding, the planting process, and harvesting are taken from types of

machinery in developed countries . The word automation here refers to the equipment and devices that work in

place of manual procedures. Globally, the demand for agricultural products is increasing rapidly. It is expected that, in the

next 30 years, agriculture production needs to be increased by about 50% to meet food demands globally .

Many regions around the world are facing labor shortages in the agricultural sector . Robotic arms can help address

this issue by automating the harvesting process and reducing dependency on human labor, especially during peak

harvesting seasons when the demand for workers is high. With the passage of time, the demand for manual farming is

decreasing due to the unavailability of agricultural skilled labor and its shortage due to extreme weather conditions in the

field . Sometimes, the reason behind labor shortages occurs due to the pandemic situation and its effect on worldwide

travel restrictions . These acts may affect the availability of migrant laborers in addition to several other factors,

such as people migrating from rural to urban life, lack of interest in farming, and traditional old farmers. As a result, a lot of

fruit products are spoiled in the field, where harvesting relies on seasonal field workers . In some cases, manual

harvesting affects farmers’ health due to improper body posture, which can cause musculoskeletal disorders . Farmers

also highlight the problem of working in a harsh environment, which can cause several health issues. Moreover, another

disadvantage of manual harvesting is the high labor cost and inefficient working. Surveys from multiple companies show

about 35–40% of the yield of citrus is spent on manual harvesting . Another study about cost calculation regarding the

production of sweet cherries revealed that half of their production margin is utilized on their manual harvesting .

2. Robotic Arm Harvesters 

In the early stages of fruit-harvesting robotic arms, the designs were rudimentary, with basic grippers and single-axis

movements characterizing their mechanical form . These early arms lacked adaptability to different fruit shapes

and sizes, leading to a quest for more sophisticated solutions . As the years progressed, a breakthrough came with the

introduction of multi-axis movement, granting these robotic arms greater flexibility and reach . The incorporation of

force sensors and vision systems marked another milestone, enabling the arms to delicately handle fruits and precisely

locate them within their environment . However, it was the 2010s that saw a true revolution in gripper design. Adaptive

grippers emerged, their flexible fingers and suction cups adapting seamlessly to a variety of fruit shapes . Soft

grippers, employing compliant materials, further improved interactions, reducing the risk of damage. In the subsequent
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years, advanced materials and electromagnetic actuators transformed the landscape, making arms lightweight, energy-

efficient, and precise. The hybrid gripper systems of the 2020s brought a new level of versatility, combining different

gripping mechanisms for enhanced fruit handling. Simultaneously, artificial intelligence emerged as a key player,

empowering these arms with real-time decision-making capabilities . Through specialized attachments and end-

effectors, from gentle suctions for delicate fruits to cutting tools for stalked ones, these robotic arms evolved into versatile,

indispensable tools in fruit harvesting . Ergonomics and safety considerations also received due attention,

ensuring that these mechanical marvels not only excelled in function but also in user-friendly operation. The design of the

fruit-harvesting robotic arm is one of continuous innovation, driven by a quest for precision, adaptability, and efficiency,

ultimately reshaping the landscape of agricultural practices.

Researchers have made significant strides in addressing the challenge of localizing fruits in fruit-harvesting robotic arms

since the last century . Before the 2000s, research in the field of fruit-harvesting robotic arms faced significant

challenges in localizing fruits due to the limited availability of advanced technology . Their efforts primarily focused on

rudimentary methods of fruit detection and localization. One of the earliest approaches involved basic computer vision

techniques. Researchers developed algorithms to analyze 2D images of fruit-bearing trees . These algorithms

relied on color-based segmentation and shape recognition to identify potential fruit locations . However, this method

had limitations, especially in varying lighting conditions and with occluded or partially hidden fruits.

Another approach was the use of ultrasonic sensors . These sensors emitted high-frequency sound waves and

measured the time taken for the waves to bounce back after hitting an object. Although they were effective in detecting

obstacles, they were less precise in identifying individual fruits. Furthermore, some researchers explored the use of

infrared sensors to detect temperature variations associated with ripe fruits . This approach, however, had limited

success, as factors like ambient temperature and humidity could affect the readings. Researchers also experimented with

mechanical contact-based systems. These systems involved probes or robotic arms that physically touched fruits to

assess their ripeness . Although this approach could provide valuable information, it was not suitable for delicate fruits

or those in high-density clusters. Initially, in the early 2000s, the focus was on basic computer vision techniques for fruit

recognition. This involved developing algorithms to detect and identify fruits based on color, shape, and texture. As

technology advanced, researchers began integrating more sophisticated sensing systems, such as multi-spectral imaging,

which allowed for a more detailed analysis of fruit characteristics. This enabled the robots to distinguish between ripe and

unripe fruits with higher accuracy. In the mid-2010s, the implementation of depth sensors marked a crucial advancement.

These sensors provided precise information about the location of fruits in three-dimensional space, allowing for more

accurate localization . Additionally, force feedback systems were introduced to ensure the gentle handling of

delicate fruits during the harvesting process . A significant breakthrough came with the introduction of machine learning

algorithms around 2013. These algorithms enabled the robotic systems to learn and adapt to different fruit varieties and

environmental conditions, enhancing their ability to accurately identify and localize fruits . By 2015,

researchers had achieved simultaneous multi-fruit harvesting capability, a milestone that greatly increased the efficiency

of fruit harvesting robots . Furthermore, the development of robotic arms with multiple degrees of freedom allowed for

more flexible and precise manipulation, further improving localization accuracy. In recent years, advancements in artificial

intelligence (AI) have played a pivotal role. Integration of AI algorithms has enabled real-time assessment of fruit ripeness,

allowing the robots to make decisions on the spot. Edge computing, introduced around 2021, further enhanced the speed

and efficiency of AI processing directly on the robot, reducing reliance on external computational resources .

Furthermore, the integration of LiDAR technology has provided the capability for 3D mapping of orchard terrain. This

allows robots to navigate and localize fruits in complex and dynamic environments . Overall, researchers have

employed a combination of computer vision, sensor technologies, machine learning, and AI algorithms to progressively

refine the localization capabilities of fruit harvesting robots. These advancements have not only improved the efficiency

and accuracy of fruit harvesting but also have the potential to revolutionize the agricultural industry by addressing labor

shortages and increasing productivity. Figure 1 shows the timeline of the significant contributions to the design and

development of fruit-harvesting robotic arms in decades. It can be seen that there has been a major contribution to its

development in the recent decade due to its growing demand in the agricultural sector.
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Figure 1. Timeline showing significant contributions in fruit-harvesting robotic arms development.

An autonomous robotic arm developed by for apple harvesting that comprises a custom-made end-effector. A Pentium IV

2 GHz PC with 1 GB RAM, Panasonic VR006L robotic arm, tractor, generator, and touch panel PC with HMI are used in

the manufacturing of a prototype.

Huang  developed a robotic arm with a path-planning plate form simulated in MATLAB. Their focus is to find a solution

for the end-effector harvester to reach its destination with high precision by implementing an inverse kinematics

technique.

Another low-cost prototype for a fruit harvester is designed by  using a stereo vision camera. The vision system is

installed in the end-effector so that the updated information related to arm movement is sent to the controller for further

necessary actions. The complete prototype is constructed using Minoru 3D for the vision system, DC gear motors, 3D

printed arm parts using dimension SST 1200es, 3D printer, and an STM32F407VGT6 controller.

It is observed from the literature the main key issues are due to achieving low harvesting time, which was examined by

. A low-cost, high-speed robotic apple harvester has been proposed, which boasts the ability to sense, plan, and

harvest. The entire prototype is mounted on a John Deere Gator electric utility vehicle and comprises a manipulator,

custom-made end-effectors, TOF camera, and color camera. The detection of objects (apples in this case) is achieved

using circular Hough transformation (CHT) and blob analysis (BA) techniques.

An autonomous sweet pepper recognition and tracking system has been developed using a simulation approach . The

simulation is carried out using MATLAB, V-REP, and ROS software for analysis. The algorithms are executed in MATLAB,

and the real-time images captured by an external camera are filtered to remove color noise. The system’s performance

was evaluated using 78 images.

A real-time image processing algorithm is used to determine the location of fruit, and their kinematic solution is obtained

using C# . A mechanical custom-made end-effector is developed to detach the fruit, and the pressure required for the

desired fruit is calculated precisely by determining the tolerable pressure. Visual tasks are carried out using a two-

dimensional camera with the addition of a depth sensor. The results were validated using 100 images, demonstrating an

acceptable level of accuracy in fruit localization and harvesting.
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A geometrical solution that can transform the exact location of peduncle coordinates into robotic arm joint functions using

a Convolutional Neural Network (CNN) is validated . Kinect RGB-Depth camera is mounted on the robot for real-time

image processing. The result validation shows a harvested success rate of about 52%.

Another robotic arm harvesting prototype based on deep learning techniques implemented for fruit harvesting and

recognition are Point Net-based and Mobile-DasNet, respectively, which is designed in . The complete prototype is

customized using a Universal Robotic manipulator UR5, self-design end-effector, intel D-435 depth camera, and NVIDIA

GTX-1070 GPU.

Feng incorporated laser technology into an apple-harvesting robot . A laser vision system that allows the robot to

accurately measure the distance to the target. This laser vision system enables the robot to perform a three-dimensional

scan of the target scene, capturing detailed spatial geometry information and analyzing the relationship between the fruits

and branches.

An integrated prototype is designed in , whose testing and validation are carried out in the greenhouse. The whole

system is implemented by acquiring six Degree of Freedom (DOF) robotic arms, a Fotonic F80 depth camera, GPU, and

PLC. The software counterpart in this model consists of C++ and ROS indigo on Ubuntu. Although attractive work is

carried out, it has several drawbacks in terms of harvest success rate and detachment time.

A novel apple harvesting robot end effector that incorporates a pneumatic flexible actuator as a curved joint is created in

. This innovative design allows for a substantial output force, enabling the end effector to firmly grasp the target fruit

with excellent flexibility. This breakthrough development has the potential to significantly enhance the efficiency and

effectiveness of apple harvesting processes.

A localization-based detection and fruit harvesting prototype is prepared in  with a custom cutting mechanism. The

proposed system contains a Braccio robotic arm, depth camera, and Arduino Due controller. The software part is

established using MATLAB and Arduino IDE environment. The prototype has several limitations in terms of performance,

and the system is not fully automated because, during testing, it requires some manual modification.

A closed-range vision-based chili harvesting robot with a custom end-effector is designed in . The proposed

manipulator detaches the chili using a suction and grasping mechanism. To minimize fruit damage, the detachment

process is developed the same as manual harvesting. The prototype contains a laser diode, a laser receiver , five DOF

manipulators, and a computer. The drawback of this design is a single trunk training model that works only on aligning a

single trunk, so this type of prototype is not used for harvesting in a field environment.

Zhang designed a manipulator for an apple-picking robot and conducted experiments to study the control stability of the

manipulator . The control area was divided into a stretching area and a harvesting area to ensure smooth operation.

The trial showed that once the robot ranges the target, the required stabilization time is less than two seconds. This

suggests that the manipulator’s control system is stable and capable of quickly stabilizing once it reaches the harvesting

area.

Another designed prototype for an automated mushroom harvester is proposed in . Special custom end-effectors are

designed for the delicate control of mushrooms. The algorithm developed for localizing and identification of mushrooms is

based on the calculated area of the mushroom top. The maximum diameter of the mushroom top harvested by the system

is 75 mm. To solve the problem of low lightning conditions, a Phillips TLE 23Watt bulb is used near end-effectors to

maintain a better environment for target identification by the vision system. The calculated damage rate claim by the

author during the testing of the developed prototype is 3%.

Zhao has developed a robot for apple harvesting that features a 5° series joint with an integrated arm that has both lifting

and telescopic capabilities . The robot’s performance was tested under controlled laboratory conditions, resulting in an

80% success rate, with a harvesting period of 15 s.

An Automated Robotic arm for the orange harvester was developed in . The vision system for fruit identification is

composed of two cameras (ZED Stereo camera and A4tecch Webcam) and one ultrasonic sensor. A stereo camera is

used to detect orange trees by applying a green detection algorithm. A webcam is used to serve the end-effector to reach

the fruit, and an ultrasonic sensor is used for the distance measurement of the fruit from the end-effector.

The intelligent fruit-harvesting robot designed by Gu was equipped with advanced technologies such as autonomous

navigation, computer vision, and robotic arm control . The robot was able to autonomously navigate through the

[67]

[68]

[69]

[70]

[71]

[72]

[49]

[73]

[74]

[75]

[76]

[77]

[78]



orchard using sensors and algorithms to detect obstacles and plan its path. It could identify mature fruits using computer

vision algorithms with a high recognition rate in the field of agricultural robotics.

Most of the above developments show that the basic aim of their work is the successful harvesting of fruit using an

optimal detachment mechanism. Results claimed by the manufacturer in the previous developments are shown in Table
1.

Table 1. Overview of recent developments in automated fruit harvesting prototypes.

Ref. Component/Equipment Used Software/Algorithm
Used Performance Results

Braccio Robotic Arm
Arduino Due

Intel real sense depth camera

MATLAB
Arduino IDE

Localization success rate 37.7%

Detachment success rate 65.5%

Harvest success rate 24.7%

Cycle time 7 s

Six DOF robotic arm
Fotonic F80 camera

Custom-built LED-based illumination
GPU and PLC

C++
Python

ROS Indigo on Ubuntu 14.04

The harvest success rates. 61%

Cycle time 24 s

Seven DOF manipulator
Custom end-effector

Single CCD color camera
TOF-based 3D camera

MATLAB
C++ domain.

Localization success rate 100%

The harvest success rates. 84.6%

Cycle time 7.6 s

Logitech cam
Supplementary halogen lamps
Adafruit GPS breakout module

Arduino Uno

V-REP
ROS

MATLAB

Localization success rate 94%

Cycle time 2 s

servos (RX-64)
Cine camera MATLAB N/A  

Kinect RGB-Depth camera
6 DOF ARM

Custom made gripper

Mask R-CNN
ROS

Fruit detection success 87%

Cutting point detection 71%

The harvest success 52%

Pentium IV 2 GHz PC with 1 GB RAM
Industrial robot (Panasonic VR006L)

Touch panel PC with HMI
Custom gripper

Halcon Software

Fruit detection success 80%

Fruit harvesting success 80%

Cycle time 9 s

Universal Robot UR5
Customized soft end-effector.

Intel D-435 camera
NVIDIA GTX-1070 GPU

ROS
Linux Ubuntu 16.04
RealSense package

ROS MoveIt

DasNet Recognition success 91%

Mobile-DasNet Recognitio success 90%

Custom made end-effector C#
Detection success 85%

Harvesting success 73%

Minoru 3D USB Webcam
3D printed robotic arm.

STM32F407VGT6 controller
N/A

Distance error of 6%

Cycle time 16 s

Five DOF robotic arm
Infra-red laser diodes

AC servo motors
Computer

N/A

Localization success rate 60%

Fruit harvesting success 80%

Cycle time 14 s

486 DX 33 MHz Computer
Fluorescent tube, Phillips TLE 23 W/29

Pulnix TM 500 camera
N/A

Localization success rate 70%

Fruit harvesting success 76%

Cycle time 8 s
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Ref. Component/Equipment Used Software/Algorithm
Used Performance Results

Six DOF Robotic manipulator
Electric cart

Arduino Microcontroller
ZED Stereo camera
Webcam (A4tecch)

Ultrasonic Sensor (US-100)

Arduino IDE
Green Detection Algorithm

Open CV Library
Visual Studio

Localization success rate 75%

Fruit harvesting success 85%

Cycle time 9.41 s

It is observed from previous work that harvesting time, harvesting success rate, and localization success rate are the main

focused parameters that are discussed by the authors in the literature. The harvesting cycle is the period for the

detachment of a single fruit that starts from the initial manipulator movement to the successful reach of the fruit to the

container. The localization success rate is the ratio of the total number of available fruits and detected fruits by the vision

systems. Harvesting success rate is the ratio of total number of fruits harvested and the number of fruits detected by the

system.
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