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Neurofibromatosis type 1 (NF1), a genetic tumor predisposition syndrome that affects about 1 in 3000 newborns, is

caused by mutations in the NF1 gene and subsequent inactivation of its encoded neurofibromin. Neurofibromin is a tumor

suppressor protein involved in the downregulation of Ras signaling. Despite a diverse clinical spectrum, one of several

hallmarks of NF1 is a peripheral nerve sheath tumor (PNST), which comprises mixed nervous and fibrous components.

The distinct spatiotemporal characteristics of plexiform and cutaneous neurofibromas have prompted hypotheses about

the origin and developmental features of these tumors, involving various cellular transition processes. 
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1. Neurofibroma Formation

1.1. The Developmental Origin of Schwann Cell Lineages

Friederich von Recklinghausen initially coined the concept of neurofibroma in 1882 , noting that both neuronal and

fibrotic components were present within these tumors. In subsequent studies, the identification of abnormal Schwann cell

(SC) proliferation in neurofibromas led to the SC origin hypothesis ; therefore, neurofibromas have long been

recognized to originate from SC lineages. Despite the early consideration of mature SCs as the pathogenic origin, studies

published recently following the establishment of various genetically engineered mouse (GEM) models indicate the

possibility that neurofibromas may originate from earlier-stage SCs . To date, the specific cell type within the SC

lineage leading to neurofibroma formation is controversial.

The term neural crest stem cell (NCSC) was first put forward by Stemple and Anderson in 1992, following their successful

isolation of neural crest cell populations with self-renewal ability and multipotency in vitro . NCSCs are a transient cell

population, emerging at the dorsolateral portion of the neural tube during vertebrate embryogenesis and then migrating to

extensive locations. They later differentiate into a wide range of cell lineages and tissues, depending on the local

environment, including most of the neuronal and glial components of the peripheral nervous system (PNS), as well as

bone, cartilage, endocrine cells, melanocytes, fibroblasts, and smooth muscle cells .

In the first stage of SC lineage development, a subpopulation of NCSCs gives rise to boundary cap (BC) cells. These are

transiently located at the motor exit point (MEP) and the dorsal root entry zone (DREZ), acting as a boundary between the

central and peripheral nervous systems and allowing the passage of axons . The discovery of specific molecular

markers has greatly contributed to the further characterization of BC cells . These cells express the transcription factor

gene Krox20, also known as EGR2 in humans, and produce the SC components of the dorsal and ventral nerve roots,

playing a role in the early myelination of the PNS . Moreover, in culture, BC cells can also generate other cell types,

such as melanocytes, astrocytes, and neurons . In addition, a subpopulation of BC derivatives was recently found to

express Prss56; lineage-tracing studies demonstrated that Prss56-expressing BCs have broad differentiation potential

and can give rise to SCs in the nerve roots, hypodermis, and dermis, suggesting the potential of BC cells as candidates

for the cellular origin of both pNFs and cNFs . The specific expression pattern of Krox20/EGR2 and Prss56, together

with Hey2 and Wif1 in mouse and/or human lines, suggests that BC clusters emerge at embryonic day (E) 10.5–11 in

mice .

In addition to differentiation into BC cells, migrating NCSCs (both multipotent and restricted) can differentiate into

Schwann cell precursors (SCPs) at around E12 to E13 in mice . Furthermore, both Krox20-expressing and Prss56-

expressing BC cells can convert to SCPs in nerve roots and to satellite cells and nociceptive neurons in the dorsal root

ganglia (DRG) . SCPs are glial-restricted cells found in early embryonic nerves, which are in intimate contact with

nerve axons and maintain a certain level of multipotency; they have the ability to generate endoneurial fibroblasts,
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melanocytes, and parasympathetic or enteric neurons. Although they share some common features with NCSCs, SCPs

differ in the expression of specific glial differentiation genes and molecular markers, such as myelin protein 0 (P0), growth-

associated protein 43 (GAP43), cadherin-19, and other molecular factors . Another specific characteristic of SCPs is

their dependence on axon-associated signals, which determine their proliferation and differentiation to myelinating or non-

myelinating cells . In the second stage of SC lineage development, a subset of SCPs converts into immature SCs at

E13–15 in mice, regulated by a number of signals associated with axons, including neuregulin 1 (NRG1), endothelin, and

the notch signaling pathway. Similar to SCPs, immature SCs maintain close contact with axons but differ substantially in

their molecular phenotype, with increased expression of specific proteins, including glial fibrillary acidic protein (GFAP)

and S100 calcium-binding protein (S100). In addition, the survival of immature SCs depends on autocrine signals, rather

than axon-associated NRG1 signals.

In the subsequent stage, the associated axons determine the developmental type of immature SCs . Immature SCs

that are in contact with large-diameter axons, reaching a ratio of 1:1 through proliferation, and proceed to transform into

myelinating SCs (mSCs) around birth . In contrast, immature SCs in contact with small-diameter axons develop into

mature non-myelinating SCs (nmSCs) at varying SC-to-axon ratios and form Remak bundles  (Figure 1).

Figure 1. The developmental stage of SC lineage and corresponding characteristics of different cell types. Neural crest

stem cells (NCSCs) can differentiate into multipotent boundary cap (BC) cells and SC precursors (SCPs). The SCPs

further develop into immature SCs, which then differentiate into myelinating/non-myelinating SCs according to the

associated axons. These mature types can de-differentiate upon specific mutation or injury into repair SCs. The

corresponding embryogenesis time of each cell type in mice and other features, including their association characteristics,

survival signals, molecular markers, and differentiation capacity, are listed relative to the cells.

1.1.1. The Cellular Origin of Neurofibroma

The cutaneous form of NF occurs in almost all NF1 patients, with tumors typically emerging around puberty and

potentially increasing in number over the lifespan of the patients. In contrast, pNFs arise in around 30% of NF1 patients

from early childhood and gradually expand throughout life. The significant differences between these two subtypes of

neurofibromas and the phenomenon that mouse models develop pNF but fail to develop cNF at 100% frequency jointly

indicate that the cellular origins of these lesions may differ. Specifically, their temporally and spatially distinct clinical

characteristics support the hypothesis that pNFs are congenital lesions arising from the embryonic SC lineage, whereas

cNFs likely derive from a more mature cell type in the SC lineage . 

1.1.2. The Cellular Origin of pNF

Although the hypothesis of the SC origin of neurofibroma has been put forward by researchers for decades, it was not

until 2002 that GEM models successfully recapitulated human pNF lesions, definitively demonstrating the potential of SCs

to be the lineage of origin. Knowing the crucial role of Krox20 in SC development, Zhu and coworkers used Krox20-Cre in

mouse models to specifically delete Nf1 in SC lineage cells . They found that loss of Nf1 from the SC lineage in

an Nf1  environment successfully recapitulated pNF formation in spinal nerve roots. However, although Krox20-

Cre could induce pNFs, the extensive expression of Krox20 in NCSCs, SCPs, and SCs meant that the exact time of

initiation and cells of origin remained unknown . In 2008, Joseph et al. showed that germline deletion or conditional

deletion of Nf1 using Wnt1-Cre led to transient hyperproliferation and self-renewal of NCSCs without typical tumor

formation. In addition, no NCSCs were identified in normal adult peripheral nerves or the regions that develop
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neurofibroma, and no tumorigenicity due to Nf1 loss in NCSCs was observed. Accordingly, the authors speculated that

neurofibromas might arise from later NCSC derivatives . In the same year, Zheng et al. induced mutation of Nf1 in

SCPs using P0a-Cre rather than the Krox20-Cre, which led to pNF formation in the sciatic nerve. The results suggested

that nmSCs of the Remak bundles might be the cellular origin for neurofibroma . However, no conclusion could be

drawn as to which stage in the SC lineage was critical for neurofibroma formation mediated by NF1 loss. In 2011, Le and

colleagues reported that inducible Plp-CreER -mediated ablation of Nf1 in SCs during both embryonic and adult stages

resulted in peripheral nerve hyperplasia and pNF formation. However, embryonic stages (including SCPs and immature

SCs) were more susceptible to pNF, in comparison with adult stages (100% versus 2%) . Another study, carried out by

Mayes and coworkers, proposed that embryonic and adult SCs had similar potential to give rise to neurofibromas;

however, the clinical manifestation of pNFs as congenital lesions is less supportive of a central role for mature SCs . In

2014, Chen et al. reported that the cells of origin for paraspinal pNF were PLP GAP43  cells, which could be detected in

the embryonic DRG at E11.5 but not at E13.5. It was also demonstrated that PLP  cell populations included both

embryonic Krox20  and Dhh  cells . Due to their specific expression of molecular markers, PLP GAP43  cells were

considered to be at the SCP developmental stage and therefore potentially the elusive cells of origin for paraspinal pNF.

The authors hypothesized that there may be an overlapping of cell types in the transition from NCSCs to embryonic and

mature SCs, such that a subpopulation of the remaining SCPs could continue into adulthood and retain the potential for

pNF formation .

1.1.3. The Cellular Origin of cNF

Unlike the considerable achievements made in developing GEM models to study the cellular origin of pNF, few animal

models have been established to recapitulate the characteristics of cNF, leaving its origin and pathogenic mechanisms

relatively unknown. Given the near 100% incidence of cNF in NF1 individuals, there remains an urgent need to investigate

the formation and development of cNF. The first GEM model to successfully generate cNF was produced by Satio et al. in

2007, using Camk2-Cre to drive N-Ras activation . These transgenic mice exhibited hyperpigmentation of the

epidermis throughout their lives and developed diffuse cNF later on. Nonetheless, pNF lesions and other manifestations,

such as schwannomas and astrocytomas, were not detected in this research. The authors speculated that further signals

in addition to activated N-Ras may be required for the development of these tumors. In 2008, Wu and colleagues

established a GEM model using Dhh-Cre to inactivate the Nf1 gene . In vivo ablation of Nf1 at E12.5 not only

recapitulated human pNF but also effectively generated cNF in an Nf1  microenvironment. The results obtained in these

studies overturned the previous view that cNF probably arose from mature cell types in the SC lineage, based on its time

of initiation . Regarding the location of cNF, follow-up studies further explored its specific origin, focusing on another

stem cell population known as skin-derived precursors (SKPs), found in the dermis of humans and mice. SKPs are also

multipotent, with the capacity to differentiate along neuronal and glial cell lineages, giving rise to SCs, neurons,

adipocytes, and other cell types. In 2009, Le et al. pioneered research into the ability of SKPs to induce neurofibromas

upon Nf1 loss. In this research, SKPs isolated from tamoxifen-treated Nf1  CMV-CreER  mice that had been injected in

the proximity of the sciatic nerves recapitulated pNF, indicating the intrinsic capacity of SKPs to generate neurofibromas.

However, SKPs implanted in the dermis of mice could also generate classic cNF lesions . These data suggested that a

specific cell type within the SKP population was the cellular origin for cNF tumor initiation. However, since SKPs are a

heterogeneous cell population, the essential questions of which subsets of cells give rise to which subtype of

neurofibromas or whether there is a common origin within SKPs to form both cNFs and pNFs in the absence

of NF1 remain to be answered.

1.1.4. Associate pNF and cNF with a Common Stage of Origin

With the discovery of SKPs as a possible common origin for the different subtypes of neurofibromas, the previous concept

of distinctive initiation stages was transformed to that of a shared initiation stage. The explanation for the difference in the

timing and location of occurrence was the spatiotemporal difference in NF1 loss at subsequent developmental stages. In

2019, Chen and coworkers , as well as Radomska and colleagues, proposed that cNFs and pNFs may originate

separately from the same cell population, HoxB7/Prss56-expressing BC cells or SCPs . However, despite the effective

generation of pNFs and cNFs in GEM models and breakthroughs in the hypothesis of cellular origin, the distinctive

phenotypes observed in mouse models and human neurofibroma require further investigation. In 2021, Mo et al. used

human induced pluripotent stem cells (hiPSCs) to identify the common cells susceptible to mutation in different types of

neurofibromas . The results suggested that biallelic inactivation of Nf1 in SOX10  cells of the SC lineage could lead to

the formation of both cNFs and pNFs. Future investigations utilizing these hiPSC lines will allow the mechanisms that

define neurofibroma formation to be better understood by applying the insights gained from studies into cellular origin.
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1.2. Alterations in Schwann Cells in the Early Stage of Tumorigenesis

Under normal circumstances, SCs cover most of the surface of peripheral nerve axons, and their behavior is recognized

to be adhesively controlled by axonal contact. Signals regulating survival, proliferation, and differentiation transmitted via

axons during embryonic and adult stages are regarded as vital to maintaining SCs in a differentiated state and ensuring

normal neural functions . In recent years, the molecular mechanisms of SC–axonal interactions, including the

NRG1-ErbB signaling pathway, have been widely studied.

Loss of contact between transiently proliferating SCs and axons is a common occurrence in the early stages of

neurofibroma development . A mechanistic explanation provided for this crucial event is that disruption to SC–axonal

interactions results from the Ras-Raf-ERK-dependent downregulation of an SC surface protein named semaphorin 4F

(Sema4F) . High levels of Ras signaling and low levels of Sema4F trigger tumorigenic properties in neoplastic SCs,

inducing increased proliferation. In addition to the molecular mechanisms of pNF, Radomska et al. provided a perspective

on the occurrence of cNF . They hypothesized that the increase in density of local innervation in mutant skin might be a

mechanism to compensate for SC hyperplasia in order to maintain appropriate levels of contact; however, when

overridden, SCs can no longer interact with axons, and the increased branching may lead to a pro-tumorigenic phenotype.

The branching capacity of nerve terminals in the upper dermis may be associated with the lack of perineurium .

2. Neurofibroma Progression

2.1. Schwann Cells Contribution and Lineage Shift

In the process of neurofibroma growth and progression, SCs, the most abundant glial cells in the PNS and also the

suspectable tumor cells of neurofibromas, have been shown to play multiple roles. Stonecypher et al. found that

neoplastic SCs could produce NRG1, which then promoted neoplastic SC proliferation in an autocrine or paracrine way

. Neoplastic SCs also secreted cytokines, such as stem cell factor (SCF) and colony-stimulating factor 1 (CSF1); such

factors were proposed to act in a “cytokine-cytokine receptor” manner, recruiting immune cells such as mast cells and

macrophages, both of which secrete transforming growth factor-β (TGF-β) to active neurofibroma-associated fibroblasts

for ECM remodeling . As in the process of neurofibroma formation, a process of rapid de-differentiation of SCs is

triggered by axonal damage, which subsequently destroys the myelin sheath. With the development and progression of

the tumor, these SCs undergo consistent de-differentiation and finally revert to a progenitor-like state of proliferation . In

this process of cellular transition, the synergistic effects of the Ras-Raf-MEK-ERK pathway and inflammatory signals have

been demonstrated as the driving factors . Several studies have been explored to identify related inflammatory signals

and determine altered gene expression patterns involved in this conversion process, including downregulation of genes

coding for the key myelin transcription factor Krox20, as well as structural proteins such as P0, and upregulation of pro-

inflammatory factors, such as tumor necrosis factor α (TNFα), interleukin-1α (IL-1α), and interleukin-1β (IL-1β) .

Specifically, additional effects of nerve injury in facilitating SC phenotype transition have also been recognized. To verify

this, the researchers obtained pigmented melanocytes (probably by SC trans-differentiation) and rare neurofibroma

formation after cutting the sciatic nerve in Nf1 heterozygous mice . Ribeiro et al. performed nerve crush in P0-

Nf1  and P0-Nf1  mice that do not develop neurofibromas, and observed infiltration of immune cells and appearance of

neurofibromas .

Wound repair following local trauma is regarded as a dynamic process followed by three main phases—inflammation,

proliferation, and remodeling—in which various candidate mediators participate . Thus, upon local trauma, the demand

for new undifferentiated cells is met by the nerve regeneration capacity, which can promote the transformation of mSCs

and Remak bundles into repair SCs, which is a pro-tumorigenic phenotype and capable of accelerating neurofibroma

progression  (Figure 2).
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Figure 2. SC lineage shift and contributing factors in neurofibroma progression. The neoplastic SCs can rapidly de-

differentiate to a progenitor-like state, disrupting SC–axonal interactions with tumor development. The underlying

mechanism involves Ras-dependent downregulation of an SC surface protein, semaphorin 4F (Sema4F), together with

elevated inflammatory signals, especially upon injury. Other environmental factors, including cellular and non-cellular

components, further create a tumor-promoting microenvironment. The proliferative state of neoplastic cells and supportive

tumor microenvironment combined to promote neurofibroma progression. ↑: upregulation of signaling pathways; ↓:

downregulation in expression.

2.2. Role of the Tumor Microenvironment

During the early embryonic stages, the microenvironment appears to be tumor-suppressive, allowing normal

differentiation and proliferation of NF  SCPs . However, as neurofibromas develop, the nerve microenvironment

converts to a tumor-promoting type, with complex mutual interactions between cellular and non-cellular components. As

heterogeneous tumors, neurofibromas comprise neoplastic SCs as well as fibroblasts, immune cells, neurons, endothelial

cells, and ECM components. In addition to the original neoplastic cells, the non-neoplastic cell types in the tumor

microenvironment are also crucial in the development of neurofibromas. A series of genetic studies have demonstrated

that NF1-homozygous SC lineage cells and haploinsufficiency of NF1 in non-neuronal cells are both required to promote

the pathogenesis of neurofibroma . The complex effects of the tumor microenvironment on neurofibroma

formation and progression, especially the intricate interactions of both cellular and non-cellular components, have been

summarized in detail in a review published in 2021 ; however, specific mechanisms remain unclear. Moreover, the

occurrence of neurofibroma in normal individuals, as well as the recognition of patient subgroups with mosaic NF1 caused

by postzygotic NF1 mutation, suggest that an NF1  environment may not necessarily be required for neurofibroma

formation . Thus, further studies and animal models are still urgently required to recapitulate the characteristics of the

human neurofibroma microenvironment and shed light on its function in neurofibroma growth and progression.
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