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Radiomics is an emerging translational field of medicine based on the extraction of high-dimensional data from

radiological images, with the purpose to reach reliable models to be applied into clinical practice for the purposes of

diagnosis, prognosis and evaluation of disease response to treatment.
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1. Introduction

In the last few years, the inclusion of standard digital imaging among the possible sources of big data for precision

medicine has represented one of the new frontiers of research. Particularly, radiomics, the “omic” field related to

diagnostic imaging, has been viewed as a great opportunity for several medical fields, yielding the most interesting

results in oncology. Radiomic tumor analysis, including intra and inter-tumor heterogeneity, tumoral micro-

environment and infiltrating cells, aims to extract quantitative features from medical imaging that are potentially

beyond the perception of the human eye, in order to uncover novel features that are associated with treatment

outcomes, disease molecular expressions or patient survival.

Moreover, recent technological advances in the field of computation and artificial intelligence (AI) applied to

radiomics, hold promise in addressing challenges in its application . In breast cancer, radiomics has been

recently applied to identify molecular phenotypes and lymph node metastases, to evaluate treatment response and

to predict disease survival .

2. Why Do We Need Radiomics in the Breast Cancer Care?

Breast cancer (BC) is the tumor with the highest incidence worldwide . Although the screening and the

advancements in personalized treatments have improved survival, it is estimated that BC related deaths will

increase 43% globally from 2015 to 2030 .

At present, the diagnosis of early BC is based on radiological evaluation and histopathological confirmation of

malignancy on biopsy samples . With such approach is possible to characterize molecular alterations safely

and effectively but have inherent limitations due to tumor heterogeneity and accessibility, as well as from procedure

related risks .
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Notably, the BC heterogeneity (which also undergoes temporal variation) is recognized as an important factor

leading to cancer treatment failure and poor prognosis . The quantification of heterogeneity relies on

identification of various biomarkers, by the use of either tissue biopsy or medical imaging features. While the

image-guided biopsies offer excellent spatial resolution for tissue analysis on a cellular scale and allow genetic and

molecular sequencing ; however, biopsy is limited by risks of invasive procedures and focal sampling errors and

limitation by tumoral characteristics such as small size, location or heterogenous necrosis .

Radiomics has the capability to analyze both temporal and spatial heterogeneities through quantitative serial data

evaluation and recent advancements in radiomics analysis provide the potential to retrieve useful incremental

information to characterize molecular alterations from standard imaging data in a non-invasive way . However,

radiomics currently suffers from lack of validation and standardization: further developments and improvements are

needed to achieve reliable and clinically applicable results .

Whatever the method, the accurate biological assessment of BC is crucial because each subtype has its own

biological and genetic profile with a subsequent different prognosis and treatment options. Subtypes are

characterized by distinct molecular profiles, proliferation rates, tumor receptors and grade. Due to their potential

effect on prognosis and clinical management, four biomarkers are tested consistently in biopsies and excision

specimens of BC: estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2

(HER2) and Ki67 antigen .

Prognosis for early-stage ER-positive/HER2-negative BC is usually excellent  and most of the invasive BCs

hormone receptor positive show a more indolent clinical course . Therefore, PR and ER status are considered

as strong positive predictive factors since the advent of targeted hormone therapy.

At present, tumors are often classified as “luminal-A” or “luminal-B”, human epidermal growth factor receptor 2

(HER2)-overexpressing and triple negative (TN), based on immunohistochemical analyses . Luminal A are

cancers with ER+, PR+ and Ki67 < 20% and ER+, PgR+/− and Ki67 < 14%, and the best prognosis. Luminal B are

cancers with ER+ but may have variable degrees of ER/PR expression, are higher grade and have higher

proliferative fraction. HER2-overexpressing BC are ER−, PR− and HER2+ and they have a poorer prognosis than

luminal BCs while the TN cancers (ER−, PR− and HER2−) have the poorest survival rate. These classifications

could be used to inform adjuvant treatment decisions. Specifically, either grading or Ki-67 could be used to

distinguish between the Luminal-A- and B-like .

Accordingly, biomarkers are crucial to tailor treatment strategies to the individual patient in the paradigm of

personalized medicine . However, the only way to obtain the biological profile of BC is currently through a tissue

sample via surgery or biopsy. For this purpose, a new non-invasive technique based on imaging would be

worthwhile. Radiomics, through the conversion of standard digital imaging into mineable, quantitative data

expressing different tumor properties, has gained recognition as a new tool in the field of cancer care for non-

invasively profiling of BC .
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Particularly, the ultimate purpose of radiomics applied in BC care should be early diagnosis of BC and prediction of

its clinical course and biological aggressiveness in order to optimize treatment .

The imaging evaluation of BC through mammography, ultrasound (US) or magnetic resonance imaging (MRI) is

currently essentially qualitative. This includes subjective evaluations such as tumor morphology/structure, type of

enhancement, anatomic relationship to the surrounding tissues. However, to reach a truly personalized medicine, a

quantitative evaluation is demanded too . Data derived from radiomics investigation, such as the intensity, shape,

textural related features and wavelength related transforms, may provide valuable information to differentiate

benign from malignant lesions, to predict treatment response, to assess cancer molecular profile and to derive

robust models that combine multidisciplinary information .

3. The Workflow of a Radiomic Study

Most of radiomics studies concerns its application in the oncological field and the first step is generally to acquire

the appropriate images. The Quantitative Imaging Biomarker Alliance and Quantitative Imaging Network have

defined standardized imaging protocols and recommendations in the field of quantitative imaging  to improve the

reproducibility of radiomics studies, which remains one of the biggest drawbacks currently limiting their clinical

application.

Radiomics features are generally extracted from routine medical images that decode information about a region of

interest (ROI) which are specified to limit the spatial extents of the analysis and can be delineated manually, semi-

automatically or automatically, with increased reproducibility for textural features extracted with automatic

segmentation algorithms compared to free-hand region delineation . Feature extraction from the ROIs is

performed using specific algorithms and are thus objective imaging features, with standard mathematical definition

of the most common features .

An example of MRI-based radiomics workflow for features extraction is shown in Figure 1.
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Figure 1. Example of MRI-based radiomics workflow. The first phase is the image acquisition (i.e., by breast MRI

with contrast-enhancement sequences), then (orange arrow) the ROI segmentation could be performed manually

or by automatic or semi-automatic software, finally (orange arrow) the radiomic features are extracted and selected

by algorithms. An example of a semi-automatic segmentation by a threshold value method is shown in the three

figures below (blue arrows). ROI: region of interest, DCE-MRI: Dynamic contrast enhancement-Magnetic

resonance imaging.

The features can be broadly classified into four categories: morphological, histogram-based, textural and related to

the gray level co-occurrence matrix and to transform-based features . Morphological features describe different

aspects of the lesion shape, such as volume, surface area, convexity or the borders heterogeneity. Histogram-

based features characterize the histogram of voxel intensities, including the average value, standard deviation and

parameters related to the histogram shape such as skewness and kurtosis. Textural features focus on the spatial

arrangement of voxel intensities, trying to capture different properties of their distribution in terms of heterogeneity,

randomness, presence of clusters or privileged signal directions. All these features can be calculated from the

images as they are, or after applying mathematical transforms, such as wavelet of Laplacian of Gaussian (LoG),

resulting in the so-called transform-based features. While hundreds or thousands of features may be computed,

only a selection of fewer (and more specific) features is required to compute a clinically useful radiomic signature.

Features whose value is not stable when images are repeatedly acquired under the same experimental condition

(referred to as unstable or not repeatable features) should be identified a priori, by means of phantom studies or, if

feasible, test-retest acquisitions in the clinical setting and eliminated . Usually, a big gap between the number of

features extracted (p) within a study and the number of patients actually recruited (n) remains, leading commonly to

p>>n, with the risk to build radiomic models with high predictive accuracy in the experimental dataset but with

extremely poor generalizability of the results, due to precise modelling of dataset “noise” instead of the true

biological behavior. To overcome this problem feature selection and dimension reduction is of utmost importance,

and different approaches can be performed, including rigorous algorithms such as principal component analysis,

[32]

[34]



Radiomics Advancements in Breast Cancer | Encyclopedia.pub

https://encyclopedia.pub/entry/11414 5/16

LASSO or Boruta . The desired response variable differs based on the study, and models are built using the

selected features to suit specific aims. For classification problems (e.g., benign vs malignant lesions), various

classifiers are used including support vector machine (SVM), random forest (RF) and XGBoost classifiers. To

predict continuous variables, such as the expression of biological markers, various regression methods including

linear regression, regularized linear regression and RF are commonly used. For prediction of survival, Cox

regression models with or without LASSO approach are finally performed.

Most radiomics studies involve a mixture of biomedical imaging specific techniques related to signal processing

and proper AI applications, a broad field of computational techniques which includes machine learning (ML) and

deep learning (DL) algorithms, the latter being often “black-box” and self-learning neural networks, with less

dependence on human input in the model building step . Given the high number of features obtained within

radiomics studies and the often-non-linear relationships involved, these techniques offer a better approach in

clinical predictive modeling compared to traditional inferential statistic and if properly applied, can limit model

overfitting. Since a number of radiomics studies focused on BC are limited to single-center data lacking external

validation, cross-validation with a leave-one-out, k-fold approach or with bootstrapping can be adopted using splits

of the data into training and validation sets .

However, the optimal method of validation remains external dataset independent validation, which is typically

accomplished in multi-center studies. However, acquiring multi-center data is challenging, so the solution may be to

leverage an open database such as the cancer genome atlas program (TGCA), to acquire the external validation

data.

As previously elucidated, reproducibility and standardization of radiomics analysis is currently the biggest issue.

This partly because of the intrinsic high number of different steps involved and partly because every one of each

can be performed in several different ways. The retrospective nature of studies, the heterogeneity of software and

the variability of the radiomics features that can be extracted in the different studies raise legitimate concerns

regarding the potential lack of reproducibility in radiomics. It is good practice to acquire imaging data using

standardized settings that should be well documented in published papers, in order to be accurately evaluated

during peer-review and be available to different research teams working on the same field. Data obtained under

such settings should be shared on public repositories in order to receive appropriate external validation.

4. Radiomics Application in Breast Cancer

Even though there are studies about radiomics based on mammography, digital breast tomosynthesis (DBT), US

and even PET/CT, in BC imaging scenario the radiomics approaches have been investigated mainly with MRI and,

in the very last few years, with the contrast enhancement spectral mammography (CESM). However, results of

most studies have been derived from relatively pure study designs, with homogeneous patient populations where

the MRI was sourced from specific scanner systems and a single field strength. This limits their wider applicability

and generalizability at present.
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Table 1 and Table 2 summarize in our opinion the most relevant original studies and reviews, respectively, on

radiomics in breast imaging published in peer reviewed journals from 01/2018 to 01/2021. Results from other

interesting studies are briefly discussed only in the text.

Table 1. Original studies on radiomics in breast imaging published in peer reviewed journals from 01/2018 to

01/2021, classified on modality/technique and ordered by newest first. Relevant papers were obtained with a

scoping review approach, using the following set of keywords and the relative controlled vocabulary terms

(Mesh/Emtree): (radiomic* OR textur*) AND (breast) AND (cancer* OR malign* OR neoplas* OR metast* OR

tumor* OR tumour*). The same approach was conduct for Table 2, which includes only review papers. ALN:

axillary lymph node, AUC: area under the curve, BC: breast cancer, CESM: contrast enhancement spectral

mammography, DCE: dynamic contrast-enhanced, ML: machine learning, NACT: Neoadjuvant Chemotherapy,

pCR: pathological complete response, SD: standard deviation, TNBC: triple-negative breast cancer, T1WI: T1

weighted imaging, T2WI: T2 weighted imaging, VOI: volume of interest.

Modality/Technique Author Purpose

Radiomics
Features

Category and
Purpose

Population Results Conclusion

CESM
Lin et al.,
2020 

Identification of
benign and

malignant BC
lesions <1 cm

Radiomics
features

extracted from
low-energy and

recombined
images on CC

position

139 patients

The radiomics
nomogram
combined

with
Radiomic-
score, BI-

RADS
category and
age showed

AUC of 0.940.

The radiomics
nomogram

incorporated
with CESM-

based
radiomics

features, BI-
RADS category
and age could
identify benign
and malignant

BC <1 cm

CESM
Mao et al.
2020 

Pre-operative
prediction of

ALN
metastasis

LASSO logistic
regression was
established for

feature
selection and

utilized to
construct
radiomics
signature

394 patients

ROC curves
of 0.774,

0.767 and
0.79 in the

training,
internal

validation and
external

validation
sets,

respectively.

Authors
identified the
cutoff score in
the radiomics
nomogram as
−1.49, which
corresponded
to a total point

of 49 that could
diagnose ALN

metastasis with
a sensitivity of

>95%.

MRI Tan et al.,
2020 

Value of
radiomics

feature

17 texture
features, 5 first-
order statistical

329 BCs Sensitivity,
specificity,

accuracy and

The MRI-based
radiomics

signature and

[35]
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Modality/Technique Author Purpose

Radiomics
Features

Category and
Purpose

Population Results Conclusion

extracted on
the fat-

suppressed
T2WI for

preoperative
predicting ALN
metastasis in

BC

features, patient
age, tumor size,

HER2 status
and thrombus

are under the
curve value of

radiomics
signature
65.22%,
81.08%,

75.00% and
0.819.

nomogram
could be used

as a non-
invasive and

reliable tool in
predicting ALN

metastasis.

Choudhery
et al., 2020

Assessment of
BC molecular
subtype, pCR
and Residual

Cancer Burden
in BC Patients
Treated with

NACT

Morphological
and three-

dimensional
MRI textural

features were
computed,
including

unfiltered and
filtered image

data, with
different spatial
scaling factors

259 BCs

Differences in
minimum

signal
intensity and

entropy
among the

tumor
subtypes

were
significant.

Sphericity in
HER2+

tumors and
entropy in

luminal
tumors were
significantly
associated
with pCR.
Multiple
features

demonstrated
significant

association
with

pathological
complete

response and
residual
cancer

burden in
TNBC with

SD of
intensity

achieving the
highest AUC
for pCR in

TNBC.

MRI radiomics
features are

associated with
different

molecular
subtypes of

breast cancer,
pathological

complete
response and

residual cancer
burden.

[5]
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Modality/Technique Author Purpose

Radiomics
Features

Category and
Purpose

Population Results Conclusion

Hao et al.,
2020 

Contralateral
BI-RADS 4

lesion
assessment

1046 radiomic
features

178 BCs

DCE-T1WI
and T2WI
imaging
features

signatures
yielded an

AUC of 0.77,
which was
better than
the AUC of

each
signature

alone.

The MRI
radiomics-
based ML

model based
on T2WI and
DCE-T1WI

features
provided

complementary
information in
discriminating

benign and
malignant

contralateral
BI-RADS 4

lesions.

Lo Gullo et
al., 2020

Assessment of
sub-centimetric
breast masses

in BRCA
patients

Radiomics
features

calculated using
open-source

CERR software

96 BRCA
carrier

The ML
model

combining 5
parameters
including
clinical
factors,

GLCM-based
correlation

from the pre-
DCE phases

and first-order
coefficient of
variation from
the 1st post-
DCE phase,
achieved a
diagnostic

accuracy of
81.5%.

Radiomics
analysis
improved
diagnostic
accuracy

compared with
qualitative

morphological
assessment

alone.

Demircioglu
et al., 2020

Molecular
subtype,
hormonal

receptor status,
Ki67- and

HER2-
expression,

metastasis of
lymph nodes
and lymph

13.118 radiomic
features

extracted with a
VOI-based
approach

98 BCs PR and ER
status

predictions
yielded AUCs
of 0.67–0.69,
Ki67 0.81 and

HER2
Expressions

0.62.
Involvement

A rapid
approach to
VOI-based

tumor-
annotations for

radiomics
provides

consisternt
results to other

[37]
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Modality/Technique Author Purpose

Radiomics
Features

Category and
Purpose

Population Results Conclusion

vessel
involvement as
well as grading

of the ALN
could be

predicted with
an AUC of
0.80, while
lymph node
metastasis
yielded an

AUC of 0.71.

studies in the
same field.

Zhang et
al., 2020

Differentiation
between

benign and
malignant

lesions

Radiomics
features

extracted from
T2WI, T1WI,

DKI, ADC maps
and DCE

pharmacokinetic
parameter maps

207 BCs

The AUC of
the optimal
radiomics

model,
including T2
WI, DKI and
quantitative
DCE-MRI
parameter
maps was

0.921, with an
accuracy of

0.833.

The model
based on
radiomics

features from
T2WI, DKI and

quantitative
DCE parameter

maps has a
high

discriminatory
ability for

benign and
malignant BC

lesions.

Zhou et al.,
2020 

Differentiation
between

benign and
malignant BC

lesions

99 texture and
histogram

parameters
133 patients

The highest
accuracy of
91% was
achieved

when using
the smallest

bounding box
of peritumoral

tissues in
segmentation.

Using the
smallest

bounding box
containing
proximal
peritumor

tissue as input
had higher
accuracy

compared to
using tumor

alone or larger
boxes.

Liu et al.,
2019 

Assess
lymphovascular
invasion status

Radiomic
signature

composed of
two features

149 BCs The value of
AUC for a

model
combining

both radiomic
signature and

ALN status
(0.763) was
higher than

The DCE-MRI-
based

radiomics
signature in
combination

with ALN status
was effective in
predicting the

lymph and

[40]
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Modality/Technique Author Purpose

Radiomics
Features

Category and
Purpose

Population Results Conclusion

that for MRI
ALN status
alone and

similar to that
for the

radiomics
signature.

vascular
invasion status
of patients with

BC before
surgery.

Xie et al.,
2019 

Subtype
classification of
breast cancer

2498 features
extracted from
the DCE and
DWI, together

with DCE
images,

changing over 6
time points and

DWI images
changing over 3

b-values

134 invasive
ductal

carcinoma

Highest
accuracy of

91% for
comparing

triple negative
to non-triple

negative
cancers.

Whole-tumor
radiomics on

MRI provides a
non-invasive
approach for
BC subtype

classification.

Liang et al.,
2018 

Preoperative
Ki-67 status

Radiomic
features based

on T2W and
DCE-T1WI

318 BC

The T2W
image-based

radiomics
classifier
showed

significant
discrimination

for Ki-67
status, with
AUC of 0.74

in the
validation
dataset.

The T2WI-
based

radiomics
classifier was a

significant
predictor of Ki-

67 status in
patients with
breast cancer
while DCE-

T1WI radiomic
features were

not able to
discriminate Ki-
67 status in the

validation
dataset.

Digital
mammography

Tan et al.,
2020 

Pre-operative
prediction of

ALN
metastasis

Radiomic
signature

nomogram
combined with
receptor status
and molecular

subtype

216 BCs The radiomics
nomogram,
comprising
PR status,
molecular

subtype and
radiomics
signature,
showed
excellent

The
mammography-

based
radiomics
nomogram

could be used
as a non-

invasive and
reliable tool in

[43]
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Table 2. Review studies on radiomics in breast imaging published in peer reviewed journals from 01/2018 to

01/2021, ordered by newest first.

References

1. Pesapane, F.; Codari, M.; Sardanelli, F. Artificial intelligence in medical imaging: Threat or
opportunity? Radiologists again at the forefront of innovation in medicine. Eur. Radiol. Exp. 2018,
2, 35.

Modality/Technique Author Purpose

Radiomics
Features

Category and
Purpose

Population Results Conclusion

calibration
and better

performance
for the

metastatic
ALN detection
(AUC 0.883
and 0.863 in
the primary

and validation
cohorts),

better than
each

independent
clinical

feature and
radiomics
signature.

predicting ALN
metastasis.

Digital
Mammography

Stelzer et
al., 2020

Distinguish
malignant from

benign
classification

249 image
features from

gray-value
histogram, co-

occurrence and
run-length
matrices

226 patients

A high
sensitivity
threshold

criterion was
identified in
the training
dataset and
successfully

applied to the
testing

dataset,
demonstrating
the potential

to avoid 37.1-
45.7 % of

unnecessary
biopsies at
the cost of
one false-
negative.

Combined
texture analysis
and ML could

be used for risk
stratification in

suspicious
mammographic
calcifications.

Zhou et al.,
2019 HER-2 status

186 radiomic
features

306 l BCs

In the testing
set the AUC

of the
radiomic
model in

assessing
HER-2 status
was 0.787.

Radiomics
features could

help in the
preoperative
evaluation of

HER-2 status in
patients with

BC.

[46]

[47]

ReferenceModality/Techique Purpose

Radiomics
Features

Category and
Purpose

Population Results Conclusion

Reig et
al., 2020 MRI

Review
focused on

machine
learning

techniques
in breast

MRI

Pre-
processing,

neural
networks,

deep learning,
machine
learning,

segmentation,
texture

analysis

Breast malignant and
benign pathology.

The Author
discuss the

possible future
directions of

machine
learning in the

current
workflow of

breast lesions
assessed with

MRI.

Granzier
et al.,

2019 
MRI

Systematic
review,

response
prediction of
neoadjuvant

therapy

Various
radiomic
feature
models,

evaluated
with the

Radiomics
Quality Score

(RQS)

Studies
ranging
between
35-414

BC

AUC values
ranged

from 0.83
to 0.85.

The best
performing
multivariate
prediction

model,
based on
logistic

regression
analysis,
showed
AUC of
0.94.

The
systematic

review
revealed large
heterogeneity
for each step
of the MRI-

based
radiomics
workflow.

Consequently,
the results are

difficult to
compare.

[50]
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