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Green and blue infrastructure (GBI) is defined as a network of landscape components, which include green areas

and water bodies. Such an infrastructure, available within an urban space, provides diverse environmental,

economic, and social benefits to people and other living organisms.

green-blue infrastructure  food-energy-water nexus  tradeoff  small scale urban system

1. Introduction

Concerning the flow of key resources for human survival, food, energy, and water can be interrelated with green

and blue infrastructure (GBI). This green-blue system can perform various functions, having the potential to

produce multiple services, such as food, water purification, temperature regulation, and others, which are crucial

for urban adaptability . Several developed countries implemented their GBI to reduce the urban heat effects

(Germany, Australia), improve carbon storage (South Africa), control surface runoff (Brazil, Netherland, USA), and

increase local food production (Singapore) .

From a human perspective, in parallel to ecosystem services (ES), GBI can also produce some dis-services . For

example, while the cultivation of vegetables generates food to support humans, it might require a huge amount of

water. For instance, 200 L of water is required to produce 1 kg of vegetables . Trees in the urban environment

provide regulating service, by cooling or shading effects in Summer and protection against the chilled wind in

Winter . Nonetheless, trees might need water in abundance . On the other hand, the cultivation of fruit trees,

with known edibles such as apples ( Malus spp.), cherries ( Prunus spp.), and pears ( Pyrus spp.), is prohibited in

urban streets due to the falling of their fruits on footpath and stroller injuries . Green roofs (GRs) are capable of

reducing the fluctuation of indoor temperatures in cold as well as warm weather conditions and minimizing the

energy consumption of buildings . Sometimes, the conservation of energy utilization can be induced, due to

unexpected natural factors (e.g., the rainfall will reduce the requirements of extra water) . Moreover, GRs reduce

stormwater runoffs , which may include heavy metals such as Fe, Zn, Cu, and Al . According to the authors’

observations, large amounts of metals can be upheld (92% of Cd, 99% of Pb, 97% of Cu, and 96% of Zn),

especially in summer. However, such heavy metals might contaminate the vegetables .

Food, energy and water (FEW) are key inter-linked resources for the survival of individuals and human

communities . Such a mutual relation among different resources and their dynamics is synthesized through the

nexus concept and framework . For instance, energy is necessary for food production, landfill gas, and waste

from food production and consumption can be used for energy generation . Food production and
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consumption also use water and generate wastewater . Energy is needed for water treatment processes,

while energy production requires water and generates wastewater .

However, FEW nexus should be further integrated with ecosystem . In fact, this integration would support the

achievement of sustainable development goals . GBI can act as a unifying spatial and functional (referred to

provide ecosystem services) framework, as well as a system within which flows of food, energy, and water exist

and can be quantified. Figure 1 illustrates the nexus structure. The food production practices drive energy use

intensities and water extraction rates. At the same time, energy is essential for food and water, and water safety is

the key to electricity generation and food production. Water is demanded to produce electricity, e.g., hydropower,

and the harvesting of biomass can be used for biofuel production. Birol and Das  reported that around 15% of

global water extraction was consumed for the production of energy. Energy is essential for the transport, pumping,

and treatment of portable and non-portable water, i.e., wastewater, for human utilization or vegetation irrigation. On

the contrary, approximately 8% of energy is used for water purposes worldly . Regarding power generation

integration in the water cycle, some of the GBI, e.g., constructed wetlands, can provide opportunities to mitigate

energy consumption, for instance, it generates humus as well as nutrient-rich effluent water that can be utilized

directly to irrigate energy crops and for short rotation vegetation through fertigation process . Moreover, the

treated water can be used for flush toilets, street vegetation, and washing the roads, and also to reduce the extra

energy burden that is required for wastewater treatment. This is why a “GBI–FEW” nexus can be considered in the

study of urban metabolism, with the purpose of a better management of resources, supporting the transition to

more sustainable energy systems.
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Figure 1. The

sustainable “GBI-FEWN” management framework in an urban settlement.

2. Positive and Negative Impacts of GBI on FEW

We describe the most important city GBI types and the associated FEW topics that are found in studies. We

observed that scientific studies on GBI–FEW nexus primarily focused on direct and indirect ES (e.g., food). Many

studies on the direct positive effects of urban farming on food generation in built-up places or food-associated

topics are receiving attentions in scientific literatures. Some GBI types (such as green roofs, urban gardens, urban

forests, etc.) can be used for food cultivation, as shown in Table 1. For example, the rooftop gardens are favored in

dense urban cores with limited space, and different kinds of vegetables can be produced, making people more self-

reliant for local food. Nowadays, societies in developed and developing countries normally depend on urban

agriculture to meet their demands for food. Orsini et al.  inquired about the production capability of rooftop

farming in Bologna, Italy, finding that rooftop farming could provide more or about 12,000 t/year of vegetables to

Bologna, satisfying 77% of the city dwellers’ requirements. A Singaporean annually consumes 82.6 kg average of

vegetables . According to Singapore Statistics , the population of Singapore is 4.8 million, Singapore requires

396,480 t/y of vegetables. Both traditional farms and rooftop gardening can satisfy approximately 35.5% of

Singapore’s vegetable requirements . Similarly, few authors observed that the urban gardens played a crucial

role in food security and food supply in several historical periods, and the importance of urban gardens for food

security was also stressed during political and economic crises . McClintock,  studied in the USA and Europe,

the provision of urban food production by gardens formed a part of adaptation approaches in times of battles.
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When Sweden was influenced by a severe food shortage during World War II, 10% of the food utilized in the whole

country came from urban gardens . In addition, the contribution of city gardening to the urban food supply was

evaluated in Salzburg, Austria. The results indicated that out of 156 city gardeners, 76% cultivated their vegetables

and fruits, the majority of gardeners providing 44% and 10% of their annual vegetables and fruits respectively .

Urban agriculture practices can not only satisfy the vegetables and fruits requirements of the urban dwellers but

decrease the food import demands, with annual carbon emission footprint reduction as well. For instance, Lee et

al.  demonstrated that for the greater municipal area (51 km ) of Seoul, South Korea, the urban agriculture

implementation would annually decrease carbon dioxide emissions by 11.7 million kg. This offset amount is the

same value of annual carbon dioxide sequestered by 10.2 km  of 20-year-old oak forests and 20 km  of pine

forests. Hence, there is a need to develop a sustainable policy to maximize the positive effects and minimize the

negative effects of urban agriculture.
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Note:

Yes

Maybe

Not ;

Yes

Maybe

Not .

The scientific literature shows that GBI not only generates ES, but also ecosystem dis-services. However, the

same urban GBI may have positive and negative effects on, e.g., food (Table 1). On the one hand, food cultivation

in metropolitan areas ensure urban food supply especially for the poor people in developing countries. On the other

hand, it also turned out that food safety is a major concern because of environmental pollutions . For

example, heavy metals pollution is becoming a main problem sourced from gaseous atmospheric deposition .

Furthermore, though wastewater reuse for agricultural irrigation improves the efficiency of urban water system, it

leads to significant concerns about food safety of with pathogens moving from sewage water to food . Similar to

another farming system, urban agriculture itself may also contaminate water with pesticides and fertilizers .

Hence, unintentional negative impacts of each GBI must be taken into account, as this can offset the objectives

that motivate the expansion of GBI in cities. Therefore, its existence as a green infrastructure also helps control

rainwater runoff to lessen the risk of flooding.  Blue infrastructure studies are also common as their green

counterparts. We found that the effects of the urban rivers on reduced stormwater runoff, energy-saving, and

improved water supply are the topics (24%) mostly discussed in the literature, followed by CTW (17%) and streams

(15%) topics (Table 1). Some blue infrastructures (such as rivers, CTW, lakes, etc.) studied in the scientific

literature demonstrate associations to at least one subject in each of the FEW systems.

Isolated effects of various of GBI on FEW in cities, such as the direct urban ecological service (UES), are well

understood and documented in the literature. A conceptual integrated GBI-FEWN framework considering the

direct and indirect effects of GBI on urban FEWN beyond the city boundaries was developed . It presented

the impact of main causal relationships on the urban FEWN that result from the implementation of different

types of GBI in cities, highlighting potential conflicts or win-win situations. The comprehensive understanding of

how GBI can affect food, water and energy systems simultaneously and interactively in urban areas could

assist the decision-making process in urban planning and management, supporting the transition to more

sustainable and resilient cities.

 

3. Conclusions

The interactive flows in the energy, water, and food system as a food–energy–water (FEW) nexus are very

important for the sustainable development of cities, and they can be arbitrated via green-blue infrastructure (GBI) in

the built-up area. Here, our focus is on non-built “nature in cities” infrastructure. The GBI generates multiple

ecological benefits (food production, water and energy-saving, and microclimate regulation) in urban centers. The

FEW flows also generate some negative effects (dis-services) within the GBI, for example, food products within the

green-blue system, but over-application of pesticides and fertilizers, could generate a release of toxic substances,

that might also improve water quality. If water is extracted to produce energy, it might reduce the natural water

flows of rivers, impacting on the biosphere too. Well-planned urban construction can help to control the negative

effects.

There is a need to make integrative and deliberate policy to link the GBI with each element in the urban FEW

nexus. We also focus on nexus modeling techniques in terms of their benefits, drawbacks, and applications.
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Moreover, guidance is provided on the choice of an adequate modeling approach. Finally, water, energy, and food

are linked physically, but tradeoffs among them often increase when their management is put into practice. We

must minimize the tradeoffs and build up synergies between food, energy, and water by using a holistic approach.

Therefore, the GBI-FEW nexus has become a major approach to address the relation between three important

individual resource components of sustainability.
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